Fossil Friday, Going Swimmingly

No one guessed what the fossil for this week was. Take a look at the image below and see if you can figure out who this vertebra belongs to before continuing on after the image. As you may have deduced from the title of the post, it is an aquatic animal.

Picture1

This is not the lizard you're looking for. Platecarpus. Wikimedia.

This is not the lizard you’re looking for.Platecarpus. Wikimedia.

This fossil is a really nice dorsal vertebra of a giant marine reptile. Most of the ones usually found in Arkansas are mosasaurs, but this one is different. It lived at the same time as the mosasaurs, placing it in the Late Cretaceous Period. As with all other Late Cretaceous fossils in Arkansas, it was found in the southwest corner. Specifically, it was found near Saratoga, Arkansas in Howard County by local resident Matt Smith. Interestingly, the very same spot has also turned up several nice mosasaur fossils, so it was a popular place in the Cretaceous seas. It shouldn’t be too surprising though, as it was a nearshore environment in a tropical climate much like the Bahamas today, so there would have been lots of good eating for hungry marine predators.

Elasmosaurus

Elasmosaurus

Ok, enough of the teasing. The vertebra we have here is that of a plesiosaur known as Elasmosaurus. These are classic marine reptiles that most people are familiar with to some degree. They have sometimes been described as looking like a snake that swallowed a sea turtle because of the relatively wide bodies with oar-like flippers and a very long neck. They are thought to have spent much of their time slowly cruising the seaways, using their long necks to catch fish unawares. some people have even suggestd that they floated at the surface of the water with their head out of the water, so that fish could not see it, allowing them to plunge their head down into the water and catch fish from above. That is pure speculation though. Right now there is no way to really test such hypotheses, so feeding methods remain in the realm of speculation until such time as someone figures out a way to test it adequately. At the moment, biomechanical tests indicate that either method would have been possible.

Mosasaur vertebrae. Note the rounded left end.

Mosasaur vertebrae. Note the rounded left end.

So if you find a vertebra like this, how do you tell whether it is a mosasaur or plesiosaur vertebra? They can both be large, although the one pictured here is the largest one I have ever seen found in Arkansas. The best way to tell is to look at the ends of the centrum, otherwise known as the body of the vertebra. Most of the time, that is all that is preserved, as all the processes that stick out have been broken off, like we see in this one. Plesiosaur vertebra have flat, possibly even slightly concave, or indented ends. Mosasaurs, on the other hand, have what is known as procoelous vertebrae, which have one end convex, a bit more rounded off. These differences make mosasaur vertebrae look more like over-sized lizard or croc vertebrae, whereas plesiosaur vertebebrae look more like the disc-like vertebrae seen in fish. This may mean that plesiosaurs were more adapted for aquatic life than mosasaurs. Both were clearly fully aquatic, what with neithr one of them having legs of any sort, but plesiosaurs appear to have been aquatic for longer, giving their spine to more fully adapt.

cope-70

Indeed, when we look at the age of the rocks their fossils have been found, mosasaurs are restricted to the late Cretaceous, whereas the plesiosaurs first appeared all the way back in the Triassic (another successful prediction based on evolutionary theory). This means plesiosaurs had well over 100 million years advance on the mosasaurs. It didn’t really help them in the end though. About the time mosasaurs appeared, plesiosaurs were declining. Mosasaurs evolved and spread quickly, becoming the dominant marine predator of the Latest Cretaceous. Does this mean that mosasaurs outcompeted the plesiosaurs? Not necessarily. It has not yet been sufficiently determined whether or not mosasaurs simply filled a niche left open by the plesiosaur decline or competitively excluded them. there is also the argument to be made that they would not have competed at all. The body shapes of mosasaurs and plesiosaurs are quite different, indicating they filled different niches in the marine realm, so they weren’t going after the same food sources. Therefore, there is no particular reason we know of that they could not have existed alongside each other without adversely affecting each other.

 

elasmosaursize

Nessie-montage-Tetrapod-Zoology-600-px-tiny-July-2013

Nessie picture collection by Darren Naish, Tetrapod Zoology, July, 2013.

Most people are familiar with them due to the much discussed “Loch Ness Monster”, which has often been said to be a supposed plesiosaur that has somehow survived for 70 million years. Of course, that idea doesn’t make a lot of sense for several reasons. It is highly unlikely that plesiosaurs could have lived for so long without leaving any trace of a fossil record. It does happen occasionally though. The coelacanth is a famous example of that, for a long time having a good 65 million year gap in their fossil record. They were thought to have gone extinct along with the dinosaurs until living specimens were caught. We know more about them now and their fossil record is no longer quite as limited as it once was, but it still has wide gaps in the fossil record. But more serious problems for Nessie arise from the fact that plesiosaurs were large, air-breathing marine reptiles. Coelacanths went unnoticed because they moved to the bottom of the sea, an option not available to plesiosaurs, which were limited to surface waters, and relatively shallow waters at that. That means they lived in exactly the sort of marine environments most visited by humans. That makes it hard for them to hide from people today and puts their bones in prime spots in the past to fossilize. Then of course, there is the problem that Loch Ness is a freshwater lake and plesiosaurs were adapted for saltwater. Not to say a species couldn’t have adapted for freshwater, but it does make it less likely. Finally, there would have to be enough plesiosaurs big enough to support a breeding population and there is simply no way they could all hide within the confines of a lake, especially since they have to live at the surface much of the time.

baskingsharkdecompBut what about the supposed bodies that have been found of plesiosaurs? They have all been identified as decomposing backing sharks. Basking sharks are one of the largest sharks known today. they are pretty harmless though, as they are filter feeders, much like the whale shark. When their bodies decompose, the jaws typically fall off pretty quickly. So what has been identified as the head of a “plesiosaur” was actually just the remaining portions of the cartilaginous skull without the large jaws. If you look at the picture of the asking shark here, there isn’t much left after you remove the jaws.

baskingsharkCetorhinus_maximus_by_greg_skomal

Next week is Labor Day on Monday, so I will likely not post a new fossil next week. I will post something next week, just not a mystery fossil. But there will definitely be one the following week, so please come back to see the next fossil and see if you can guess what it is before Friday. In the meantime, enjoy your vacation.




Mystery Monday Returns

Welcome back! the new school year has started for most, if not all, people by now. Everyone is busily trying to figure out new schedules, new curricula, new people, sometimes even new schools. Changes are everywhere this time of year. Paleoaerie is no exception. We didn’t get quite as much done over the summer as we would have liked (does anyone?), but it was an interesting summer, filled with good and bad. To start with the bad, the UALR web design course that was initially going to work on revamping the website is no more due to unexpected shakeups at the school. Nevertheless, a different course will take a look at the site and see what they can do, although they sadly won’t have as much time to deal with it.

arSTEMlogo1But there was a lot of good that happened. Big news for Paleoaerie is that we are now partnered with the Arkansas STEM Coalition, a nonprofit advocacy group for STEM education within Arkansas. This is really important for us because this means Paleoaerie now operates as an official nonprofit organization. What does this mean for us and you? It means that any donation to the site is tax-deductible. It also means that many grants that we could not apply for before are now within possible reach. Fundraising should be a bit easier from now on, which means we may be able to do much more in the upcoming future. One of the things we will be doing in the near future is a Kickstarter campaign to buy a 3D laser scanner so that we can start adding 3D images of Arkansas fossils onto the website, which will be available for anyone to use. One might ask why not use some of the cheap or even free photographic methods that are available. In a word: resolution. I’ve tried other methods. When one is attempting to make a 3D image of an intricate object only a few centimeters across, they don’t work well. If you want details to show up, you need a better system. Stay tuned for that.

logoPaleoaerie is also partnering with the Museum of Discovery and the University of Arkansas at Little Rock for a National Fossil Day event on October 11. Make sure to mark your calendars and come out to the museum to see the spectacle and diversity that can be found in Arkansas. There is much more than you think. We are also working with the museum on a new dinosaur traveling exhibit. It is very cool, so watch for it later this fall.

The last big news that happened recently is today’s Mystery Monday fossil. Someone brought me a fossil to examine a couple of weeks ago. The first amazing part of it is that is was actually a fossil. the vast majority of what people show me are just interestingly shaped rocks. This was a bona fide fossil. Not only was it a fossil, but a really cool one. The image below is a vertebra from a little seen animal in Arkansas and not at all for a very long time. The fossil is roughly 100 million years old, putting it in the Cretaceous Period. At that time, Arkansas was on the shoreline of the late Cretaceous Interior Seaway. Take a look at the image below and see if you can figure out what it came from. I’ll let you know what it is Friday. Thanks to Matt Smith for bringing this wonderful fossil to my attention. Come out to the National Fossil Day event and see it for yourself.

Picture1

Who Ya Gonna Call? Mythbusters?

 

Adam Savage and Jamie Hyneman of the Mythbusters do a great job of presenting commonly held myths and testing them in a variety of ways, trying and adjusting and retrying experiments. They even sometimes revisit myths with a new point of view and new questions. It is this that I think is the key to their success. They present science as a series of questions and experiments, revising and retesting, a dynamic process. Starting with what people believe and then presenting the evidence to show the real answer is an important part of the educational process. Derek Muller, who runs the Veritasium Youtube channel, did his PhD dissertation on just this topic, showing that simply providing the information did not increase learning. Unless the misconceptions the audience already held were first acknowledged and dealt with, people thought the material was clear and that they understood it, when in fact they had learned nothing at all.

All of this involves asking lots of questions. But what some teachers view as a downside to this approach (although it absolutely is not) is that invariably you will wind up with lots of questions you can’t answer. Your students will ask questions you have no idea what the answer might be. So what do you do in this case?

Hopefully, you already knew which of these options is the better choice. But where do you go to learn more? Some questions can be rather esoteric or have answers that can’t be easily looked up. Fortunately, hordes of scientists are at your beck and call to save the day. Here are four websites where you can ask real scientists any question you like. None of the scientists on these sites will do people’s homework for them, but are enthusiastic about answering questions.

Ask A Scientist

askascientist-footerAsk a Scientist has 30 scientists that will answer questions on biology, chemistry, physics, space, earth and environment, health, technology, and science careers. In addition, they have links to videos for some questions. You can look at answers to past questions and ask your own. Even though it is based in the United Kingdom, with all the scientists being from the U.K., they will answer questions from anyone.

Ask a Biologist

logo

This site is also based in the United Kingdom, but has scientists from all over the world. This site is limited to biology and paleontology, but it has over 100 scientists who can answer questions. Some are doctoral students, some are the tops in their field with decades of experience. All of them are experts in what they do and all of them are there to help. They have answered thousands of questions, all of which can be searched and read. If you don’t find what you are looking for, ask your own question. You might even find that you have started a lengthy discussion of your question between several experts, as has happened from time to time.

Ask a Biologist

aab_header

This Ask A Biologist is a National Science Foundation grantee and is hosted by Arizona State University. Again, it is limited to biology and is run by the biology faculty and graduate students of ASU. So on the one hand, you might think they might be more limited. But ASU has an extensive biology department and this site has much more ancillary material than most of the others. They have activities, stories,coloring pages, tons of images, videos, and links to other information. They have a teacher’s toolbox, providing easy searches for teachers to find exactly what they want, searchable by topic, activity, and grade level. In short, while they have several scientists available to answer questions, that is but one aspect of this educational site.

Mad Sci Network

MadSci

The Mad Sci Network has a huge amount of information. You can ask a question about anything. The site has experts from world class institutions available to answer questions. They have a searchable  archive of over 36,000 questions already answered, so they may have already answered your question. In addition to the search features, they have several categories listed, in which you can pull up all the questions in those categories. They have a “Random Knowledge Generator” if you just want to have fun browsing at random. They also have a series of what they call “Mad Labs”, which are activities and experiments you can do at home or in the classroom. They have links to more information and resources elsewhere, including general science, educational methods and techniques, museums, science fairs, suppliers, and more.

So there you have it. When you are faced with questions you can’t answer, don’t try to bluff your way through. Who ya gonna call? Hundreds of scientists from around the world, that’s who.

How Big Is Your Favorite Dinosaur? Find Out Here

Dinosaurs Life Size

By Darren Naish

Publication Date: 2010

Barrons Educational Series, Inc. ISBN: 978-0-7641-6378-4.

dinolifesizecoverAuthor: Darren Naish is a well respected paleontologist publishing on all manner of dinosaurs, marine reptiles, pterosaurs, and other extinct animals. While he has published several notable scientific papers, he has also written extensively for the general public, ranging from children’s books to books for the educated layperson. In addition to this book, Naish published Dinosaur Record Breakers, another good book that kids will find interesting. He has also published on cryptozoology, the mostly pseudoscience study of “hidden” creatures, such as Bigfoot and the Loch Ness monster, debunking a variety of mythical creatures and discussing more plausible alternatives. You can also always find him at his highly regarded and widely read blog, Tetrapod Zoology, on the American Scientific blog network.

Dinosaurs Life Size came out a few years ago, but it is still a decent book for kids. I can’t say good for reasons discussed below, but it is better than many and has mostly good information. Don’t get it confused with the book of the same name by David Bergen, which came out in 2004. Naish’s book is much more up-to-date and scientifically accurate, having the advantage of having been written by an active researcher in the field who knows what he’s talking about. Not to criticize Bergen’s book as I haven’t read it, but if you were going to choose a book that was a decade old written by a non-expert or a book a few years old written by an expert who also happened to be a professional writer, which would you choose?

The book begins with a short introduction to dinosaurs and the book. A fold-out timeline follows, which puts all the animals discussed in the book in its appropriate place in time. The timeline includes a brief description of each period within the Mesozoic Era, commonly known as the Age of Dinosaurs. The meat of the book is a generally two page description of 26 different animals. Each animal gets a brief discussion of what it looked like, where it lived, and a few interesting factoids that have been pulled “from the bones” as a section for each animal is called.

dinolifesizetoc

Of course, the main draw of the book are the size comparisons. These are handled in two ways. Each animal is illustrated in full view alongside a young kid for scale. Almost all of them also have a drawing of a body part in real size, which really puts into glaring contrast just how big (and tiny) some of these animals were. Herrerosaurus has a hand, Lesothosaurus has its head for scale. At the extreme ends, Sauroposiedon has an eye and Argentinosaurus has a toe while Microraptor and Archaeopteryx are small enough to be drawn in their full glory.  Most are covered in two facing pages, so that every turn of the page presents a new animal. A few are presented on fold-out pages, although I am unclear as to why because only one actually takes advantage of the extra space to present its animal. the other one just puts two animals instead of the standard one.

dinolifesizedeino

After the animal descriptions is a fold-out page with a dinosaur quiz to test the reader on what they learned. this is followed by a short discussion of what fossils are, how they are formed, how old they can be, how they are found, and a couple of famous fossil examples. The book ends with a glossary and index. All told, there is plenty of solid information for the young reader who will gaze in wonder at the dinosaurs and at least some will enjoy testing themselves on the quiz.

The book has good information. I particularly like the pictures of a globe marking where each one is found. The illustrations of the life size bits give a good indication of the actual size of the animal. I like the pictures of real fossils and the bits of information about what has been found through their study. The book is very visual and should appeal to kids. The book is listed as being most appropriate for kids in grades 2-6, which I think is a pretty fair assessment. Advanced readers in first and second grade will like it, but will be bored by it by the time they get out of elementary school, but most kids in the 3-5 grades will like the book.

There are only SIX dinosaurs here!

There are only SIX dinosaurs here!

I do, unfortunately have some serious complaints about the book. First and foremost, the book is called “Dinosaurs Life Size”. I would prefer books labeled as such stick with dinosaurs. Despite knowing better, Naish chose to include descriptions of Plesiosaurus, Stenopterygius, Liopleurodon, Pterodactylus, and Quetzalcoatlus; none of which happen to be dinosaurs. You may notice that this leaves only 21 actual dinosaurs. A better title would have been Mesozoic Reptiles Life Size, but I can understand that probably wouldn’t sell as well. Still, it is misleading. What I cannot forgive though, is that he does NOT clearly identify them as non-dinosaurs. This is such an unforgivable sin that I am tempted to tell people not to get this book. The only place he indicates they are not dinosaurs is ONE sentence in the introduction. Naish has published research on all of these animals, he certainly knows better, so this is unpardonable.

Yep, even some of these dinosaurs had bristly "feathers". Mark Witton

Yep, even some of these dinosaurs had bristly “feathers”. Mark Witton

The next complaint I have is in the illustrations themselves. Some of the dinosaurs are noticeably absent of feathers. The Gallimimus is bare, except for a tuft at the top of its head. Part of this an be forgiven by the enormous advances that have been made due to new discoveries in the few short years since publication of the book. But even in 2010, we knew more dinosaurs were covered in feathers much more than is shown in this book. It is possible that feathers of some sort were an ancestral condition of ALL dinosaurs, so the bareness of some of these illustrations is wrong, even for the information he had at the time, so why the drawings were done this way is beyond me.

The average human height is 5'6.5". Yes, that's descriptive of the species.

The average human height is 5′ 6.5″. Yes, that’s descriptive of the species.

The last complaint I have is in the sizes. Each description is given a word description of how big each animal is. But the pictorial comparisons with the children are not the best. There is only a rough idea of how big the children are, which one is forced to base entirely on one’s experience with kids as there are no scale bars in any of the pictures. For a book about size, this is an inexcusable oversight. I have personally seen kids of a similar age who were between three feet and five feet. Now imagine extrapolating that difference to an animal that is thirty times that size and you can see the immense errors involved. Admittedly, there is a lot of uncertainty in the actual sizes of many of these animals (there are pretty much no complete sauropod tails, for instance, so determining length is problematic). But this book neither mentions anything about the uncertainties involved and then complicates the issue with further uncertainties in the illustrations while giving exact measurements in the written description.

So, in conclusion, I cannot fully support this book as there are too many serious problems. However, it is still better than many others on the market and does have solid information in the texts. The pictures give a rough idea of sizes, which for the age the book is geared towards is reasonable. But it is inconsistent with the sizes between the text and the illustrations; the illustrations themselves are not always accurate in terms of what we know about feather coverings, thus showing somewhat antiquated pictures of dinosaurs; and the book is really about Mesozoic reptiles, not dinosaurs anyway. Thus, the best I can do is give it maybe 3/5 stars, which pains me deeply because Darren Naish is a truly smart, well-read, and knowledgeable person who otherwise has written lots of great material.

 

6 Ways to Completely Fail at Scientific Thinking, Part III

All of the mistakes discussed so far are universal among humans to a greater or lesser degree. These last two are also universal and extremely common, leading to a world filled with pain and suffering, bigotry, and misunderstandings on a grand scale. I should warn you that this discussion will make many people uncomfortable because it cuts into the core of how people view themselves. People define themselves through the memories of their experiences and we tend to remember sound bites better than the complexities of reality, which makes for a dangerous combination.

5. We tend to oversimplify our thinking. 

Of all of the mistakes, this one has most likely caused the most problems. When we were still living as hunter-gatherers in small bands, this was a benefit and can still be in some areas. When you live in an environment filled with potentially life-ending threats, you need to be able to recognize and react to them quickly. When that rustle in the bush may be a Smilodon about to attack, you can’t afford to think about all the different options because if you do, you are dead. But most of us no longer live in that sort of environment. We can take the time to think. We just have to fight our natural instincts that are hardwired into our brains. It’s tough, I realize that. It’s impossible to do all the time. But I hope you will see why it is so important that we try.

kirkmeme

It is at the core of stereotypes and the “us vs. them” mentality that drives everyone to some extent. Any time you hear someone say, “Blacks are…,” or “Muslims are…,” or insert any group you want, that person is oversimplifying their thinking. It does not matter what you say after that first phrase, it will not accurately describe all members of that group. All “Blacks” are not actually black, nor do they share the same heritage, culture, language, or anything else. All those people that are thought of as Muslims by those using that stereotype are not in fact Muslim. I say this because almost invariably when non-Muslims refer to Muslims in a stereotypic fashion, they are confusing Arab (or anyone from the Middle East) and Muslim. Muslims and Arabs, like any large group, do not all share the same beliefs and culture.

In the first post in this series, I mentioned the anti-vaccine movement. It all started from ONE paper (since thoroughly discredited and debunked) that only referred to ONE specific vaccine. The whole point of the paper was to discredit that specific vaccine so the author could sell his own version. But no one in the anti-vaccine seems to remember that and they have simplified the topic to ALL vaccines.

In science, this sort of thinking causes people to read a single set of experiments (or even one experiment) on a specific target and then try to apply the result to everyone. This mistake is rampant in the medical field. A study will be published saying that a series of rats showed a result and instantly the media says that all humans will have the same result. Fortunately, scientists are well aware of the differences between rodents and humans. A result in rats and mice often does not carry over into humans. This is why all drugs have to go through human trials after they pass animal trials.

Even if a drug works in the small sample of humans, that sample is not truly representative of all humans. You may have heard that science has proven that vitamins are pointless and may even be harmful? The studies that indicated vitamins had no benefit were all done on healthy volunteers that mostly had good diets. So yes, if you are healthy and are getting everything you need from your diet, you don’t need vitamins and the excess can actually hurt you. Unfortunately, most people do not fall into this category, so for them, taking vitamins can indeed help. (This is just another example that eating right and having a healthy lifestyle will avoid many of the health problems most people have and will save you money in the long run. Exercise is almost always preferable to pills and is free.) Even healthy humans are incredibly variable and have different metabolisms. The same drug will not work the same on everyone.

All those internet memes you get with a picture of someone with a saying on it? Fabulous examples of oversimplification. The internet is full of examples of overly quick and thoughtless thinking. Here is a tip, if anyone can boil down the essence of a social problem with one pithy statement, it is almost guaranteed to be WRONG. I have heard more than one person say that because Muslims flew planes into the World Trade Centers, all Muslims were evil and should therefore all be killed, because “they all want to kill us anyway.” To any rational person, this statement is clearly, insanely, wrong. You may wonder why I have mentioned Muslims a few times. That is because right now, it is the most prevalent and dangerous stereotype I know and one which is very familiar to everyone. They either hold that view or know many who do.

I could go on and on about how people oversimplify for the rest of my life, but it gets seriously depressing rather quickly, so I will stop here. But I hope you get the point: Oversimplification, overgeneralizing, has led to the wrongful deaths of hundreds of millions of people and is the source of much of the hatred in the world. Be aware of just how common this mistake is and STOP DOING IT.

You how do you avoid this problem? Never take one study or one source as truth. It is ok to keep an open mind about something, but don’t put your faith into it unless you can verify it through other reliable sources. Wait for other studies that confirm the results because it may be that the first study was wrong. Avoid overgeneralizing. Just because something worked once, do not think it will work every time. Always, always, always keep the parameters of a study in mind, respect the limitations of any study. A result on one mouse in one situation has little to do with results from many people in all sorts of variable conditions. Do not extrapolate beyond the data without clearly understanding that the extrapolation is purely speculative guesswork and may not hold up in reality.

6. We have faulty memories.

One way that our memories are faulty is in that confirmatory bias discussed in the previous post. You can see this problem in everyone who gambles, be it at a casino or the stock market. Most people remember their successes far more commonly than their losses. People can lose fortunes this way. Casinos are masters at exploiting this mistake. If a gambler wins early, they tend to continue playing long after they have lost their winnings and more. Every time they win, they remember that one win and forget all the loses before that. Some people do the opposite, focusing on their failures and minimizing their successes, which leads to problems therapists deal with every day.

Science, particularly medical science, has a form of institutionalized faulty memory. It is much easier to publish positive results than negative ones. Therefore, experiments that didn’t work tend to be glossed over and forgotten, focusing on the ones that succeed. Of course, if those successes are due to chance or faulty experimental design, ignoring the negative results leads the whole field astray. How serious is the problem? A paper in 2012 found that only 6 out of 53 “landmark” papers in haemotology (study of blood) and oncology (cancer research) could be replicated. This sort of publication bias on the positive can have profound problems. It may sound like this means that science can’t be trusted, but what it really means is that it is critically important to never jump on the bandwagon and follow the advice of a new study. Wait until it can be confirmed by other research. Science is all about throwing hypotheses out there and testing them to see if they really work. One test doesn’t do it. Multiple tests are needed and you cannot forget the failures.

Where faulty memory really comes into play is in just how easy it is to change our memories. Simply hearing another person’s experiences can change our own. My favorite study showing this interviewed people about their experiences at Disney World. The participants watched an ad showing people interacting with Bugs Bunny at Disney World.  The fact that this event is impossible (Bugs Bunny was not owned by Disney and so could not make an appearance at Disney World) did not keep many of the people from saying that they had fond memories of seeing Bugs Bunny at Disney World.

Kida discusses the results from some researchers in which they asked students where they were when they first heard of the space shuttle Challenger exploding. They asked shortly after the event and then again two and a half years later. Despite claiming that their memories were accurate, none of them were entirely accurate. Some of them were wildly off. Yet the students insisted that they were correct and disavowed the record of their earlier remembrance. There are several studies like this that say the same thing: our brains do not faithfully record our experiences and those memories change both over time and through suggestion by others. 

So, what does this mean for us? It means that we have a bad habit of misattributing things, combining memories or making them up whole cloth. Criminal psychologists are deeply aware that eyewitness testimony is the least reliable evidence that can be brought into court, despite the fact that it is considered the most reliable by most people. People commonly say “I’ll believe it when I see it,” and “I saw it happen with my own two eyes!” We put a lot of stock into our perceptions and our memories. But, as is quite clear from decades of research, neither our perceptions or our memories are at all reliable.

So what are we to do if we can’t rely on our own experiences? Make records, take pictures, write it down. Compare experiences with other people. There is some truth to the now common statement; “Pics or it didn’t happen.”

 Final thoughts

And so we conclude the introduction to the six basic errors in thinking we all make to a greater or lesser extent. These mistakes are universal, they happen repeatedly daily basis. Yet they have grave consequences. In science, we have ways to try to avoid them. We record data. We share it with others and let them try to poke holes in it. We do not trust only one example and demand verification. Scientists make these mistakes all the time. But by being aware of the mistakes and having procedures in place to deal with them, we can minimize the problems.

Thinking mistakes

6 Ways to Completely FAIL at Scientific Thinking, Part 2

imagesLast post, I covered two of the six most common mistakes people make in their thinking. Today I will cover the next two: appreciating the role of chance and misperceiving the world around us. Both of these are huge topics, so as Inigo Montoya said, “Let me ‘splain. No, there is too much, let me sum up.” chance 3. We rarely appreciate the role of chance and coincidence in shaping events. Last time we discussed just how much people hate and misuse statistics. Another way our inbred antipathy for statistics comes into play is not understanding the role of chance. People seem to need to have a cause for everything. If something goes wrong, something must be to blame. We hate to admit that anything is left to chance (which, considering that quantum physics makes everything in the universe a probability, make explain why people don’t understand it). As even Einstein said, “God doesn’t play dice with the world.” However, given enough time or occurrences, even rare events occur. I once had a geology professor who told me that given enough time, events that are almost impossible become likely and rare events become commonplace. This is quite true, over enough time and with enough attempts, even the rarest events will happen. Sometime in your life, you are almost certainly going to see something that is incredibly, inconceivably rare. People talk about 1 in a million chances being so rare as to be inconceivable and not worth thinking about, but that chance happens to over 7000 people worldwide, it will happen to eight in New York alone. Occasionally, you will be among that 7000.

1 micromort = 1/1,000,000 chance of death. I'd be careful in that bathtub, if i were you.

1 micromort = 1/1,000,000 chance of death. I’d be careful in that bathtub, if I were you.

 

Have you ever called someone only to find out they were trying to call you at the same time? I have done that with my wife. Many people invoke something mystical or a psychic connection that made us call at exactly the right time because surely, what are the chances of two people just happening to call each other at the exact same time? However, I talk to my wife on the phone far more often than I talk to anyone else. Considering the number of times that my wife and I try to contact each other, it is almost inevitable that sooner or later, we would try at the same time. There are those that seem to be consistently lucky or unlucky. If it were really just random chance, then it should all even out and everyone should be equally lucky (or not), right? Here again, with enough people, some people will just randomly be consistently luckier than others, no supernatural force required. There will always be outliers that don’t follow the typical pattern just through random chance.

You can see this same type of mistake when people incorrectly tie independent chances together. When flipping a coin, a string of 20 heads will do nothing to change the chance that the next flip will be heads or tails. This sort of mistake is often seen in gamblers and people playing sports in their belief of winning and losing streaks, in which the results of a series of chance occurrences is thought to affect the odds of future events. So how do we avoid this mistake? Never put much stock in one occurrence. Look at the accumulated data and weigh occurrences accordingly.

Probably one of the biggest fallacies people make in this regard is mistaking correlation for causation. Just because two events occur at the same time does not necessarily mean they are connected. Wearing a specific shirt when you win a game does not make it lucky. It will not influence the outcome of any other game except in how it affects your thinking. I can think of no better example of this than the Hemline Theory, which states that women’s skirt lengths are tied to the stock market. Sadly, despite such an absurd premise, it is still commonly believed and one can still find articles debating the merits of the hypothesis. Needless to say, even if they do tend to cycle together, it would be foolish to say that the stock market is controlled by what skirts women are wearing. What might be plausible is that both are influenced by some common factor. Thus, any study which claims to have found a correlation between two events or patterns has only taken the first step. Once a correlation has been found, it is then necessary to demonstrate how one affects the other. Often, it is found that there is no direct connection, but they may both be influenced by an altogether different factor. Check out the site Spurious Correlations to see almost 30,000 graphs showing correlations between totally random occurrences, such as the graph showing that increased Iphone sales are correlated with a drop in rainfall in Mexico, or that US STEM spending is associated with the suicide rate. How to avoid this problem? Look for multiple lines of evidence and a causal mechanism that explains how one could affect the other. Without that mechanism, you can only say that two things have something in common, you should avoid saying one thing caused the other until you can point to a direct connection.

Spurious Correlations. www.tylervigen.com

Spurious Correlations. http://www.tylervigen.com

4. We sometimes misperceive the world around us. Many people make the assumption that that their eyes work like cameras, recording faithfully everything in their field of view and the brain accurately records everything that goes into it. Unfortunately, this is not true. Our senses are imperfect. They neither record all the information, nor does the brain provide a complete image of what is around you. Simply put, you cannot trust your senses. Magicians count on this. One of the best I have seen is Derren Brown, who uses a mixture of psychology and good old-fashioned stage magic to perform his tricks. Visual and aural illusions abound. Take our eyes for example. Unlike a video camera that records the whole scene within the confines of its lens at the same time. We put together images from fragments. We rapidly move our eyes all around our field of view in what are called saccades, focusing on one small bit, then another. The light enters the eye and is picked up by the retina, with rods detecting intensity of light and cones detecting color. Signals from these receptors do not enter the brain as a picture. They are filtered through specialized cells, some of which detect boundaries to sharpen focus, some detect movement, etc. All of these separate signals gets sent to the brain which puts together a patchwork image, an image with a lot of gaps. We don’t usually see these gaps because our brains fill them in with what past experience tells it to expect. This is a really important point. Past experience affects what we see. Our hearing works this way as well.

The fact that past experience affects what we see plays out in various ways. We overlook things that change between eye movements. We fill in the gaps with what we expect to see. Thus, how we view the world is in part dependent on what we expect to see and our expectations are based on our experiences. People with different experiences may view the same thing very differently. This happens so much that when we see something that does not fit our expectations, our brains can even go the point of overwriting the visual input with our prior expectations. And it gets worse. If we focus on something, this tendency to be blinded to other things increases. Most people have heard of ignoring the elephant in the room. A couple of researchers at Harvard did what they call the invisible gorilla experiment. People were asked to observe a group of people wearing shirts that were two different colors. They were told to count the number of times a ball was passed between members of the group wearing the same color shirt. Most people could successfully do this. However, many people missed the man in a gorilla suit who walked into the middle of the group, paused to look at them, and then walked off.

How could someone miss such an obvious thing? They were focused on the ball and missed the bigger picture. This problem is called selective attention or “inattentional blindness.”. This experiment has been done with hearing, in which the participants were to listen to only one of two conversations going on at the same time. This time, part way through, someone started saying, “I’m a gorilla,” multiple times. If just told to listen to the recording, everyone could hear it easily. But if told to listen carefully to only one conversation, most people never heard the gorilla. There are many, many examples like this of selective attention. This is exactly why eyewitness accounts in trials are not worth very much. You might hope it stopped at this level, but it doesn’t. Even if we accurately see what is there, our prejudices will affect our interpretation. Different colors affect our moods and perceptions. Religious or political beliefs affect our perceptions to the point we will literally see things differently, even our views of sports games. Space allows only a cursory mention here, but it is easy to find many, many studies, books, and shows that demonstrate just how unreliable our personal observations are. So how do we avoid this? To begin with, we recognize that our perceptions are fallible. Thus, the more independent observations we can make and the more people that observe it, the more likely it is to be valid. Take recordings that can be viewed and listened to at different times. Try this out for yourself. Watch a movie with other people. Have someone prepare a list of questions in advance about a particular scene. After everyone has viewed it, have everyone answer the questions on their own and then compare them. Most likely, you will find some things people answered differently, other things some people did not see at all. Or just listen to the responses from political leaders after any speech by any President. The best way to get around this problem is through multiple, independent observations. Never trust just one observation and always question the biases of the observer.

Next post we will wrap up this series with the last two common mistakes. Stay tuned.

6 Ways to Completely FAIL at Scientific Thinking, Part 1

dontbelieveWhen I was a kid, I was always taught the scientific method is a matter of developing hypotheses, testing them, and using the observations from the tests to revise the hypotheses. Very straightforward, but overly simplistic. My teachers rarely, if ever, talked about the crucial strategy of multiple working hypotheses, coming up with every imaginable way that could explain our observations before we started trying to test them. But the most important thing that was never taught was how to think explicitly and clearly. Logical and clear thinking is the heart and soul of science. In fact, there is no decision that cannot be improved by clearly thinking about the question and the available data. We just celebrated Independence Day in the United States. It is time we celebrate our independence from fuzzy, ill-defined, and confused thinking. In the last post, I discussed the critical importance of clearly defining a problem in terms of actionable questions. The first step is to understand a problem well enough that it can be clearly articulated and defined. Then all factors that contribute to the problem can be clarified. But you can’t stop there. Once you have a list of known factors, you have to decide which ones you can actually do something about and not waste time arguing about those you can’t change. Focusing on the definable and workable factors produces results. Wasting time on things you can do nothing about is counterproductive. In this post, I am going to briefly discuss the first three of six general mistakes that EVERYONE makes from time to time. You can never be completely rid of them, but you can be aware of them and try to reduce their influence in your life. If you do this, I promise you will make better decisions. You will improve your life and the lives of those you touch. These six mistakes are outlined and fully discussed in the book Don’t Believe Everything You Think: The 6 Basic Mistakes We Make in Thinking, by Thomas Kida. I highly recommend you get this book and read it.

1. We prefer stories to statistics. People are terrible at statistics, even people who really should know better, so bad in fact, that they make them up to sound smart. You can easily find numerous variations of the statement, “80% of all statistics are made up on the spot, including this one.” Or, as often (likely incorrectly) attributed to Mark Twain, “there are three kinds of lies: lies, damn lies, and statistics.” So it’s no wonder that people suck at them and prefer stories. There are abundant studies illustrating how our brains are wired to listen to stories, how personal stories influence our behavior more than statistics, such as this one, or this one. Statistics happen to abstract groups, stories happen to identifiable people. We even prefer to dress up our information to make it more personal, more interesting, but the very act of storifying information makes that information less likely to be true. It is much more likely that Bill robbed Peter than it is that Bill robbed Peter AND paid Paul. The more complicated things get, the less likely. But this mental shortcut can cause serious problems. This is well illustrated by the anti-vaccination scaremongering going about. The whole anti-vax movement can really be traced to one report by Dr. Andrew Wakefield in 1998 that found a correlation between vaccines and autism, research that has been completely discredited and proven fraudulent. Since then numerous studies have linked into the alleged link and found nothing, such as this one. But no matter how many studies find no link, many people hear Jenny McCarthy talk about her autistic son, they hear others talk about their autistic children, and come to the conclusion that all the studies must be wrong, because the stories carry more weight with them. Disregarding the millions of children who get vaccines that never develop autism, people focus only on the stories of people that claim otherwise. Thus, thousands of children are getting sick and dying because of a belief in stories over statistics.

2. We seek to confirm, not to question. Have you ever read something that you disagreed with and instantly dismissed it or conversely, have you ever accepted evidence simply because it agreed with what you thought? If so (and you have, everyone does), you are guilty of confirmation bias. Confirmation bias causes people to seek out and weigh information that already agrees with their point of view and disregard evidence that disagrees with them without ever really analyzing the data. If you get all your news from either FOXNews or MSNBC, you are likely to rarely, if ever, hear contrary points of view and are thereby limiting input to only that which you already agree. Thus, people who do so will weigh that evidence in favor of their preconceptions and will assume that their view is more prevalent than it really is. If one gets all their information about evolution from the Institute for Creation Research, they will never get accurate information about the theory as the ICR is based on the belief that evolution is false, so they seek only information that discounts it. The only way to avoid this is to seek out diverse news outlets. While you read them, remind yourself that you will suffer from confirmation bias, so you may (hopefully) be able to give evidence from all sides a thorough critique.

Lest you think that only untrained laymen fall into this trap, confirmatory bias is rampant in science as well and it is a serious problem. Even the ivied halls of Harvard do not protect one from poor thinking and confirmatory bias as this article by Neuroskeptic clearly illustrates wherein he takes a fellow neuroscientist to task for not recognizing the fallacy of only looking for confirmatory results. There is a publication bias in the scientific literature towards positive results, the negative results get mentioned much less often. While this is true in all fields, it is particularly important in medical research, and psychology research has been hit particularly hard lately.

dilbert-confirmation-bias

Next post, I will cover the next two common mistakes. Stay tuned.

The Gender Gap in STEM fields and the Nature of Science

If ink was blood, the discussion of the lack of women in STEM fields would exsanguinate the whole of the human species. Yet for all the talk, the problem remains. Why? Let me answer that by bringing to your attention a post by Dr. Janet Stemwedel, a professor of philosophy at San José State University who writes on this and other topics concerning the thinking underlying how science is done. The post is not long, so I will post most of it here, you may find the original here. To clarify the post in case it doesn’t come across clearly: she quotes a block of text discussing the gender gap in the sciences and then provides her response to it.

However, there are times when people seem to lose the thread when they spin their causal stories. For example:

“The point of focusing on innate psychological differences is not to draw attention away from anti-female discrimination. The research clearly shows that such discrimination exists—among other things, women seem to be paid less for equal work. Nor does it imply that the sexes have nothing in common. Quite frankly, the opposite is true. Nor does it imply that women—or men—are blameworthy for their attributes.

Rather, the point is that anti-female discrimination isn’t the only cause of the gender gap. As we learn more about sex differences, we’ve built better theories to explain the non-identical distribution of the sexes among the sciences. Science is always tentative, but the latest research suggests that discrimination has a weaker impact than people might think, and that innate sex differences explain quite a lot.”

What I’m seeing here is a claim that amounts to “there would still be a gender gap in the sciences even if we eliminated anti-female discrimination” — in other words, that the causal powers of innate sex differences would be enough to create a gender gap.

To this claim, I would like to suggest:

1. that there is absolutely no reason not to work to eliminate anti-female discrimination; whether or not there are other causes that are harder to change, such discrimination seems like something we can change, and it has negative effects on those subject to it;

2. that is is an empirical question whether, in the absence of anti-female discrimination, there would still be a gender gap in the sciences; given the complexity of humans and their social structures, controlled studies in psychology are models of real life that abstract away lots of details*, and when the rubber hits the road in the real phenomena we are modeling, things may play out differently.

Let’s settle the question of how much anti-female discrimination matters by getting rid of it.

Dr. Stemwedel hits directly on a error that is seen throughout every facet of social interactions, to say nothing of public understanding of science. The discussion had strayed into unproductive areas and away from any attempt to resolve the problem. Dr. Stemwedel attempted to bring the focus back to the problem needing to be solved.

In this instance, going back to the original post to which Dr. Stemwedel was responding, the initial question put to Neil DeGrasse Tyson was “Why are there fewer women in science?” The true answer to that question is that there are multiple reasons for the gender gap, one of which happens to be that there is a clear discriminatory bias against women in science (this fact is so well documented that linking to only one or two articles seems pointless as a quick Google search will immediately turn up a very long list of sources). Tyson did not deny there were other factors, but he focused on the sociological aspect as that problem is highly prevalent and something that can be changed.

Chris Martin, the author of the post Dr. Stemwedel was responding to, goes to great lengths to talk about all the other issues involved in the gender gap, ignoring the reason Tyson focused on the sociologic aspect. Contrary to the claims of Mr. Martin, the point was indeed to draw attention away from anti-female discrimination. He clearly states in his post that he believes evolutionary pressures explain the gender gap better than sociological ones and that the sociological factors are therefore unimportant. His whole post is a response to the assertion that this bias prevents many women from entering the field.

Faculty ratings of applications that were exactly the same except for sex of applicant.  www.pnas.org/content/early/2012/09/14/1211286109#aff-1

Faculty ratings of applications that were exactly the same except for sex of applicant. http://www.pnas.org/content/early/2012/09/14/1211286109#aff-1

Unfortunately for Mr. Martin, the evolutionary factors Mr. Martin espoused are not as well understood and nowhere near as well documented in humans as is the discrimination against women. But here is the important thing: We can’t do anything about past evolutionary pressures. We CAN do something about the discrimination.  No one is arguing there aren’t other reasons. But if you want to solve the problem, you focus on the aspects of the problem you can fix.

This problem in thinking is so widespread, one could easily argue that everyone does it. Certainly, unless taught to do otherwise, everyone does indeed make this mistake. In all of science and engineering, there is one basic rule that is critically important you must do: clearly define the problem in terms that can be dealt with. You have to be able to understand the problem in clear enough terms that you can parse out what things are relevant from those that are not. In this case, claiming there are evolutionary pressures is irrelevant to the problem of reducing the gender gap. We know that anti-female discrimination occurs. We know it is widespread. Of all the problems that Mr. Martin mentioned, this is the one that most obviously lends itself to resolution because it involves behaviors that the vast majority of people can agree on that needs to end. Unless one can reasonably expect to fix evolutionary pressures, distracting attention from the problem that can be solved is counterproductive. The good news is that when people do focus on the problems, things can and have gotten better. We still have a long ways to go, but it is improving.

resized_the-most-interesting-man-in-the-world-meme-generator-i-don-t-always-state-the-problem-clearly-but-when-i-do-it-is-half-solved-already-75c417The point of this post is not really to argue about anti-female discrimination in science, although that is a hugely important topic and something that every teacher needs to be aware of and help to stop. The real point of this post is to highlight the importance of knowing your question well enough and clearly enough that you can make progress on answering it, solving the problem. This particular topic just happens to allow me to highlight two really important topics at the same time. The next post will cover some more vitally important mistakes in thinking that anyone trying to teach the nature of science, and really, any other subject, needs to understand so you can work hard on helping your students overcome them.

 

How to Make Your Own 3D

In the last post, I covered good places to find 3D fossils. This post I want to cover how to make your own 3D images using photogrammetry. Photogrammetry is the process of turning a bunch of 2D photos into an interactive 3D image. Since I am not an expert on doing this, I am simply going to link you to a series of tutorials put together by Dr. Heinrich Mallison. Dr. Mallison describes himself as “a dinosaur biomech guy working at the Museum für Naturkunde Berlin.” If you would like to read more of his work, I suggest you check out his blog, Dinosaurpaleo, in which he blogs about his research. He also has links to a lot of his research papers and will happily send you pdfs of any other papers of his you want. Dr. Mallison is an expert on making 3D reconstructions using photogrammetry and has already done the legwork to give you all the information you need to get started.

Image

 

Getting the Right Photo

Photogrammetry tutorial 1 begins with the logical starting point: the equipment. He recommends getting a good DSLR camera with a Life View touchscreen, circular polarizing filter, good tripod, turntable, and a ring flash for optimal pictures. Also, don’t forget the scale bar and stickers. The stickers will be helpful if you have to take our photos in two sets (for instance, if you have to move the object between sets). This will require making two models and stitching them together, which will be aided by small stickers that will serve as easily findable common points so you can properly align the models.

Photogrammetry tutorial 2 discusses general suggestions on how to take good pictures that you can use for the 3D model. Here he gives advice, such as maximizing the F-number to increase depth of field, balancing your exposure, the use of HDR (high dynamic range) images, and proper cropping of the images.

 

Mallison's 3D CAD model illustrating good camera shots.

Mallison’s 3D CAD model illustrating good camera shots.

Photogrammetry tutorial 3 covers the use of turntables. He covers the type of specimens that work best, how to place the camera for the needed pictures and how to photograph with an eye for aligning the 3D models you create.

Photogrammetry tutorial 4 discusses techniques for photographing large, bulky specimens.

Photogrammetry tutorial 5 provides a ideo of the turntable method described in part 3.

Making the 3D Model

Part of a Diplodocus limb Dr. Mallison modeled.

Part of a Diplodocus limb Dr. Mallison modeled.

Finally in tutorial 6, Dr. Mallison finally gets around to actually building the model from the photos. If this indicates to you that getting good photos is essential to making good models, you would be correct. To add more to this, the writers of the blog Sauropod Vertebra Picture of the Week, or SV-POW, have a series of useful posts on how to take good photographs, manipulating them for good effect, making stereoscopic images, and much more great advice.

In this tutorial, Dr. Mallison discusses some of the programs that are available. He prefers Photoscan Pro from Agisoft. The downside to this program is that it costs $549, which is probably out of the price range for many people. The upside is that it is a versatile program designed for non-specialists. He discourages use of Autodesk 123D even though it is free because all of your work becomes the property of Autodesk 123D. He also states that others prefer Image Modeler, which is the professional version of Autodesk. It can do more than Photoscan Pro, but it will cost you much more. He also mentions VisualSFM and Meshlab, open source programs which together can be used to make 3D models and provides a link to a tutorial by a fellow paleontologist, Peter Falkingham, who tells you how to use those programs.

From there, Dr. Mallison goes into scaling and aligning the models. If you want to see some of the finished work, try here and here.

Other Options

Of course, this isn’t the only wayto make 3D objects. Photogrammetry is only way to make quality 3D images. Laser-scanning is another great way to do so. If you have a few thousand dollars, I might recommend the NextEngine 3D laser scanner. It is not as expensive as some of the other laser scanners and does quite a bit at a comparable or better quality. As a caveat, neither the photogrammetry nor the 3D laser scanning will create the most detailed images. If you want truly detailed, high resolution images, then you really need a computed tomography, or more commonly just called CT, scanners. The downsides to that is that CT scans do not preserve the color of the objects, so you lose surface details related to color, and they are hideously expensive. But at least they are not as expensive as synchotron scans. Synchotron scanners are similar to CT scanners, but are much more powerful and can create images with much greater detail, but with only five available scanners, probably not something your average paleontologist, much less a hobbyist, is going to ever see.

Once you have your 3D objects of course, there is always the next possibility: 3D printing! For that, contact your local high-tech Maker Spaces, such as the Arkansas Regional Innovation Hub. There are several places you can go to buy your own 3D printer, such as Quintessential Universal Building Device, or QU-BD, in Little Rock, AR.

Full Disclosure: I have no monetary interests or any other vested interests in any of the people or companies linked to in this essay.

3D: It’s Not Just for Movie Theaters

Jim Lane is talking about something that has been on the mind of a lot of education researchers lately. If you read much in the way of education literature at all, I am sure you will have run across many a discussion of how to improve learning by engaging the students with materials they find interesting and challenging them to solve relevant problems in a creative manner. Doing that means moving beyond the simple worksheets and memorization. It means using the newly available tools to bring the material to life and having the students work on, as one of Mr. Lane’s students called it, the edge of science.

Some of those new tools are in the realm of 3D scanning and modelling. This has allowed many museums and researchers to put some of their work online in a way that allows much more interaction than simple photos. You can, for instance, examine the head of a 2,200-year-old Chinese terracotta warrior housed at the Emperor Qin Shi Huang’s Mausoleum Site Museum or skeletons in an underwater cave from the comfort of your own home. This has great benefits for conservation and research, allowing digital preservation of fragile artifacts and researchers from all over the world to view the objects without having to spend the money to physically examine them. Much of the time, researchers will still want to see the real thing, but there are numerous studies that can be done with only the scanned images. There is even some research that can only be done on the scanned items, making the scans in a way, more important than the item itself. More to the point here, 3D scanning also opens up the object to viewing by people the world over, the vast majority of whom will never have the chance to visit the museum and see the real item.

So where can you see some of these items? There are several places on the net you can go. Here we will focus on those useful for evolutionary topics, such as fossils and anatomy (comparative anatomy with modern organisms is the heart of paleontological research). Many of the sites allow you to download the scans and print them out if you have access to a 3D printer, which are becoming increasingly common as the prices drop down to the point many individuals can buy their own and schools are starting to make them available to their students. Be warned, interactive 3D elements generally take a lot of graphics computation, so try to limit any other graphics you have up, i.e. close other browser windows, don’t try running a game in the background, the general rules of using a program with a lot of graphics. But as long as you have an up-to-date browser with Quicktime and Java, most computers these days should be able to handle it just fine (although a warning about Java, the security updates in the past year or so have made the more recent versions of java incompatible with earlier versions, so unless the developer for the site has updated their program, it may not work).

The following sites are in no particular order, so with that in mind, the first place on this list you might want to visit is Smithsonian X 3D, a website the Smithsonian recently put up showcasing objects from their collection they have scanned. At the moment, there is not a lot, but the site is new and they will be adding much more as they go along, so be sure to check back regularly. Right now, you can see 3D images of whale fossils, a mammoth, a blue crab, an orchid, a bee, and several other historical objects. Included in the collection is a scan of President Obama, the first ever 3D Presidential portrait. The basic 3D viewer is easy to use, although a few of the more advanced controls are not altogether intuitive. The website provides a brief description of each item, along with articles and videos on some of the items and the process of scanning them, including a page for educators on the use of the objects in the classroom. The Smithsonian also has more 3D collections on their human origins site. You might think that they would only have human fossils, but they have much more. You can certainly find hominid fossils, but along with them are numerous primates from Aye-Ayes to gorillas, and a large variety of other animals, from bears and cheetahs to komodo dragons and vultures. While you are there, you can a diverse array of information on human evolution, including teacher guides, lesson plans, multimedia, current research, everything you need to teach a human origins unit.

Another place you will want to check out is the Visual Interactive Anatomy pages by Dr. Lawrence Witmer at Ohio University. He and his students spend a lot of time scanning fossils and modern animals using a medical CT scanner at nearby O’Bleness Hospital or a micro-CT scanner on campus. They have put together several pages that illustrate the anatomy of several modern animals, including an opossum and the heads of a human, rhino, iguana, alligator hatchling, and ostrich. They have also collaborated with Dr. Casey Holliday on an adult alligator. The adult alligator page even has individual pages for every bone in the skull. On these pages, you will find interactive 3D pdfs and videos of the scans and reconstructions, which have a variety of structures labeled, identifying the bones, brain cavity, nasal passages, etc. In addition, you will find news and behind the scenes excerpts, and links to the published research on the specimens. On the 3D Visualizations page, you will find similar movies and 3D pdfs for a variety of dinosaurs (including Tyrannosaurus rex, Majungasaurus, and Euoplocephalus, along with several birds) and mammals from the platypus to deer to Archaeotherium, one of the group of animals often called “terror pigs”.

A website that is sure to grow is the NIH 3D Print Exchange. This site allows people to share their own 3D files for other people to download and use. The website focuses on biomedical applications, but currently you can find a variety of brains, bones, molecules, DIY lab equipment, and more. The more part I am sure will grow as people explore the site and add their own models. You can also find tutorials for making your own 3D models using 3D visualization software, and links to open source software such as Blender, FreeCAD, and Google Sketchup, as well as 3D printing services such as i.materialize and Makexyz and others.

Digimorph, or more properly Digital Morphology, a National Science Foundation Digital Library, is a site run by the CT facility at the University of Texas at Austin, one of the premier CT facilities in the country and the primary place American paleontologists go to get their fossils scanned. Digimorph provides access to these scans for the public and researchers the world over. On this site, you can find videos of scans and 3D reconstructions, some of which can be downloaded for 3D printing, for hundreds of animals, including a variety of avian and non-avian dinosaurs, along with extinct and modern species of mammals, reptiles, amphibians, fish, and even plants, coral,  crustaceans and other invertebrates. Along with the scans and 3D reconstructions, you can find descriptions of each specimen, a bibliography of research published on them, and links to useful sites for software, information on CT scanning, and other related sites. The downside to the site is they provide nothing specific for educators and the specimens that have downloadable 3D renderings are a small fraction of the total specimens available in video form, and none of them of the dinosaurs, which are only available as video animations. Nevertheless, for sheer quantity of 3D images for a diversity of animals, there is no place better.

The final site on the list is swiftly becoming the place to go for virtual fossils.GB3D Type Fossils Online project, or simply GB3D, is a website run by the British Geological Survey, Amgueddfa Cymru (National Museum of Wales), Oxford University Museum of Natural History, and the Sedgwick Museum of Earth Sciences. As the name suggests, the site is a repository for information of “type” fossils. If you don’t know what a “type” is, they have a handy guide explaining the different types. In this case, they aren’t talking about what kind of fossil it is, but things like holotypes, fossils designated in the original description of the fossil, which all others are compared to, which make them very important to scientists studying those kinds of fossils. If you want to see United Kingdom fossils, this is the place to go. They have hundreds of fossils in 3D and hundreds more in 2D. On this site, you will find a great diversity of plants and animals with high quality photographs, many of them also have stereophotos (get your 3D glasses with those red and blue lenses) and 3D models. In addition, you will find information about the fossil, such as what it is, when and where it was collected, how old it is, and contact information for the institution that holds the fossil itself. They also have a page describing the more commonly found fossils, all of which happen to be various invertebrates or fish. You will also find free programs used to view and work with 3D images you can download. They have available MeshLab, SPIERSview, and Adobe 3D Pdf Reader. Finally, you will also find links to a variety of educational resources for primary and secondary schools, universities, and the public.

Hang gliding in the Oauchita Mtns. Photo by www.mena-ark.com

Hang gliding in the Oauchita Mtns. Photo by http://www.mena-ark.com

If you want to inspire people to learn, you have to bring them right up to the edge of that knowledge cliff so they can peer over it at the wondrous space beyond, exposing them to the unknown in all its glorious mystery. Help them understand the foundations of the cliff, teach them how to build their own wings, and then push them off that cliff so they can soar into uncharted regions. When they return, they will have a better grasp of how the cliff is formed and what its boundaries are. They just might also find that cliff sticking out a little farther than when they flew off it. And when they do, you won’t have to push them, they will leap on their own. Of course, you will then have another problem: keeping up with your students. So keep your own wings in good repair. I do hope I have helped you build your wings a little stronger. If you know of any other sites that may be of use, please let us know in the comments section.

I will let Dr. Witmer finish this out and let him explain a bit about his projects and why approaches like this, particularly with dinosaurs, are useful educational tools.

 

Follow

Get every new post delivered to your Inbox.

Join 32 other followers