National Fossil Day

NFD_-2017_Poster-96dpi-613pxtallToday is National Fossil Day™. The National Park Service holds this annual event on the second Wednesday every year to coincide with Earth Science Week sponsored by the American Geosciences Institute. Earth Science Week highlights the important role of earth sciences in our everyday lives and “to encourage stewardship of the Earth.” National Fossil Day is, as NPS says, “held to highlight the scientific and educational value of paleontology and the importance of preserving fossils for future generations.”

In honor of the day, I am going to give you a whirlwind tour of some of our most outstanding fossils from all over the state. People may not think of Arkansas as being rich in fossils, but we have a rich natural history spanning 500 million years. To give you a quick summary of the wide array of fossils, just check out the map on the fossil page, reproduced below.


Arkansas Geological Survey regional map, annotated with reported fossils.

The most fossiliferous region in the state is the Ozarks, without a doubt. It is a favorite fossil collecting spot for many people, even though much of the area is national forest or national park owned, which prohibits fossil collecting. Nevertheless, fossils may be collected on any roadcut. I-65 near Leslie has several fossiliferous roadcuts. You are most likely to find abundant examples of crinoids, bryozoans like the screw-shaped Archimedes, clams and brachiopods, ammonoids (mostly goniatites), corals such as horn corals and tabulate corals, as well as the occasional echinoid and trilobite, along with many other types of fossils. This list of fossils makes it plain that the Ozarks are dominated by marine deposits, but you can find the occasional semi-terrestrial deposit loaded with plants like Calamites and Lepidodendron.

Top, left to right: Calamites, spiriferid brachiopod, blastoid echinoderm, goniatite ammonoid. Bottom left to right: Archimedes bryozoan, crinoid with calyx and fronds (very rare, mostly you just find pieces of the stalk).

There are a few fossils that particularly stand out. One is Rayonnoceras, a nautiloid ammonoid, which reached lengths of over two meters, making it one of the longest straight-shelled ammonoids ever found. The other is a shark named Ozarcus. While shark teeth are common, it is rare to find one that preserves parts of the skull and gill supports. At 325 million years, Ozarcus is the oldest one like this ever found and it changed the way we viewed shark evolution, indicating that modern sharks may be an offshoot of bony fish, not the other way around.

bc-067t-lgWe can’t leave the Ozarks without talking about Conard Fissure, a spectacular collection of Pleistocene fossils. Barnum Brown excavated the first chamber of the cave in 1906, pulling out thousands of fossils or all kinds, many of which were new to science. Of course, of all of them, the ones that most people remember were 15 skeletons of Smilodon, the largest of the saber-toothed cats. The one pictured to the right is a cast of one from La Brea, California. All of ours are held at the American Museum of Natural History.

The Ouachita Mountains are not nearly as fossiliferous, but they have two important types of fossils that are commonly found: graptolites (below left) and conodonts (below right, not from AR, Scripto Geologica). Graptolites are thought to be closely related to pterobranchs, which are still living today, even though the graptolites themselves are all from the Paleozoic Era. Most of the time, Graptolites look like pencil marks on slate, but if you find a good one, you can see they are often like serrated files that may come branched or coiled. The reason these are important is because they are hemichordates, the closest group to the chordates, all animals with a spine (either a stiff rod or actual bone). Conodonts, on the other hand, are the closest we have to the earliest vertebrates, looking like nothing so much as a degenerate hagfish.


The coastal plain is quite fossiliferous and has attracted the majority of press because it is here where you will find Cretaceous aged rocks and that means dinosaurs and their compatriots. Here you will find thousands of Exogyra oysters. Scattered among them, you can find numerous shark teeth, along with teeth from Enchodus, the saber-toothed herring (although not really a herring), especially if you look in the chalk beds. You can also find the rare example of hesperornithids, extinct diving birds, as well as fossil crocodilians.

But of course, the main draws here are the marine reptiles and the dinosaurs. Mosasaur vertebrae are not uncommon, although the skulls are. More rarely, one can find plesiosaur (the article only mentions elasmosaurs, which are a type of plesiosaur, but most plesiosaur fossils in Arkansas cannot be identified that closely) vertebrae as well.And then of course are the dinosaurs. We only have a few bones of one, named Arkansaurus, but we have found thousands of footprints of sauropods, the giant long-necked dinosaurs. Since the sauropods that have been found in Texas and Oklahoma are titanosaurs, such as Sauroposeidon, it is a good bet the footprints were made by titanosaurs. A few tracks have also been found of Acrocanthosaurus, a carnivorous dinosaur like looked something like a ridge-backed T. rex. Acrocanthosaurus reached almost 12 meters, so while T. rex was bigger, it wasn’t bigger by much.

Top left: Mosasaur in UT Austin museum. Top right: Plesiosaur vertebra from southern AR. Middle left: reconstruction of Arkansaurus foot. Middle right: statue of Arkansaurus (out of date). Bottom left: Sauropod footprints. Bottom right: Acrocanthosaurus footprint, Earth Times.

The eastern half of the state is dominated by river deposits from the Mississippi River, so the fossils found there are mainly Pleistocene aged, with the exception of a few earlier Paleogene fossils near Crowley’s Ridge. Pleistocene deposits can be found all over the state, as they are the youngest, but are most common in the east. In these deposits, a number of large fossils have been found. A mammoth was found near  Hazen, but we have almost two dozen mastodons scattered over the state. I already mentioned Smilodon, but we also have  , the giant short-faced bear, dire wolves, giant ground sloths, and even a giant sea snake named Pterosphenus. Most unusual of all is a specimen of Basilosaurus, which despite its name meaning king lizard, was actually one of the first whales. Considering the month, I would be remiss not to include Bootherium, also known as Harlan,s musk ox, or the helmeted musk ox.

Top left: Mastodon on display at Mid-America Museum. Top right: Basilosaurus by Karen Carr. Bottom left: Arctodus simus, Labrea tar pits. Wikipedia. Bottom right: Bootherium, Ohio Historical Society.

This is nowhere near all the fossils that can be found in Arkansas, but it does give a taste of our extensive natural history covering half a billion years. After all, we wouldn’t be the Natural State without a robust natural history. Happy National Fossil Day!

Mystery Fossil Revealed

Monday I posted a set of pictures showing an Arkansas fossil. Were you able to figure it out. Check below for the answer.

This skull and mandible comes from the Madrean Archipelago Biodiversity Assessment (MABA) website. I couldn’t find a good picture of an actual fossil, so I used this modern example instead. Below is a living version.


Myotis leibii, Eastern small-footed bat. Credit: Gary Peeples/USFWS

The skull is that of Myotis leibii, the eastern small-footed Myotis. Myotis bats are also called mouse-eared bats, the most famous of which is the little brown bat, Myotis lucifugus. The other fossil bat in Arkansas is the big brown bat, which is not in the genus Myotis at all. It is in the genus Eptesicus (E. fuscus specifically).

I have talked about E. fuscus before, where I talked a bit about bats in general. I didn’t go into their phylogeny at all, so I will talk about that here. Bats as a whole belong to the order Chiroptera, which is the sister group to a group called Fereuungulata. That group includes artiodactyls, cetaceans (whales and dolphins), carnivorans, and pangolins. Altogether, Chiroptera and Fereuungulata form the horribly named Scrotifera. Why do I say it is horribly named? Besides the fact that naming such a large group after scrotums is a bit odd, take a look at the simplified mammal phylogeny illustrated by Darren Naish.


Notice what is NOT in Scrotifera. That’s right. Primates, such as us. Yes, we are more closely related to rats and squirrels than we are to bats, dolphins, or cats and dogs. We are also not included in the group named for a feature we possess.

Both Myotis and Eptesicus are Vesper bats, meaning they belong in the family Vespertilionidae, along with over 300 other bat species. When it comes to diversity, mammals could easily be described as rodents, bats and their less common relatives, seeing as how those two groups include 60% of all mammals. Vesper bats are in the suborder Microchiroptera, the micro bats. The other suborder, Megachiroptera, is composed of the fruit bats like the flying foxes. The two suborders are rather lopsided in numbers, with just under 200 species in Megachiroptera and over 1000 in the Microchiroptera. This is the traditional classification at any rate.

There is another phylogeny that splits it up slightly differently and gives them different names. Megachiroptera has become Yinpterochiroptera and includes the horseshoe bats in the group called Rhinolophoidea as well as the lesser and greater false vampire bats in the genus Megaderma. Everything else that was in Microchiroptera  is in Yangochiroptera.


You can read more about it here, or in the original paper here.

So returning to the vesper bats, these include most of the bats people are likely to run into, which is why  the bats in this group are sometimes called common bats. Most of the bats in this group have rather plain faces and are insectivores. Myotis leibii itself belongs in the group Myotinae, marked in the red box in the phylogeny below, which was also put together by Darren Naish.


The interesting thing about this is that Eptesicus, the big brown bat, is in the serotine clade, up near the top of the tree and quite a distance away from Myotis, the little brown bat. Eptesicus is also sometimes called a house bat, but the house bats are in the group Scotophini, which while still in Vespertilioninae, is not closely related within the group. This is part of the reason common names can get confusing. just because the common names are similar and overlap doesn’t necessarily mean they are at all closely related.

M. leibii itself lives in forests throughout eastern North America, in spotty patches from Canada to Arkansas and Georgia. It is a small bat, weighing only about 5 grams and with a wingspan of less than 10 cm. Unusually for its size, it is long lived, living as long as 12 years and tolerates the cold better than most other bats, so spends less time in hibernation than other bats.

The fossil record of M. leibii is sparse, although the fossil record for Myotis in general is fairly good for bats. According to molecular data, the genus Myotis first appeared roughly 16 Mya, with the North American clade splitting off no more than 9 Mya. However, the actual fossil data indicates Myotis is far older, with the earliest known Myotis fossil being 33 Mya to the earliest Oligocene, although in North America, the record only extends to the late Miocene no more than 23 Mya. Interestingly, the fossil record for M leibii demonstrates a range far greater than the current distribution, with fossils being found as far as Oregon. In Arkansas, fossils are limited to one spot, which happens to be the same spot Eptesicus has been found: pleistocene deposits within the Conard fissure. If one looks in the original publication of Conard Fissure by Barnum Brown, one will find Vespertilio fuscus and Myotis subulatus, but both of those names have been changed in the intervening 110 years, to Eptesicus fuscus and Myotis leibii.

Monday Mysteries

It is long past time I resurrected Monday Mystery fossils. So to celebrate the season, here is a little animal whose relatives, or at least representations thereof, shall be widely seen over the next month.


If you think you know what this is, please leave your identification in the comments. I will let everyone know what it is and where fossils like this have been found in Arkansas on Friday. Have a great October!

Arkansas law: The Good Dinosaur and the Ugly

There are a number of things going on in the Arkansas legislature right now that deserve attention here. The first thing I want to mention is that Arkansas now has its own official state dinosaur.


On February 17, 2017, Governor Asa Hutchinson approved House Resolution 1003 to list Arkansaurus fridayi as the official state dinosaur. This bill was pushed by a high school kid named Cypress Oury and sponsored by Greg Leding, AR House representative for District 86. As those of you who have been here before may remember, Arkansaurus is the informal name of the only dinosaur ever found in Arkansas.

agsarkansaurusfootUnfortunately, we only have half of one foot, so identification has proved elusive. The best that can be said is that it is some kind of primitive coelurosaurian theropod. It is not as derived as tyrannosaurids and certainly not a maniraptoran theropod or any of the others near to the avian line. Thus, while the new drawing by Brian Engh above is better than previous versions, it is highly speculative. The arms are almost assuredly wrong and should be longer. We don’t know if it had feathers or not. It likely did, but those feathers would have been unlikely to be as long as those shown in the drawing. They would more likely have been shorter and fuzzier. This is not to say the feathers Brian Engh drew are wrong, they are certainly plausible, but a bit more advanced than is likely for a coelurosaurian that far down the family tree.

When picking a state dinosaur, Arkansaurus is certainly the most likely candidate, being the only one with an actual body fossil. But it was not the only candidate. Arkansas is known for having some spectacular dinosaur trackways. The tracks include two types. The very great majority are from a large sauropod, possibly Sauroposeidon (or depending on the taxonomy one follows, Pleurocoelus or Paluxysaurus, which may or may not be all the same or all different). Since Sauroposeidon is one of the largest known dinosaurs, this would have made a fine candidate, but the taxonomic uncertainties and the lack of actual body fossil material make it less viable. The other possibility if Acrocanthosaurus, an almost sail-backed theropod related to Allosaurus. Unfortunately, while we have footprints, we have no actual bones of this one either. We only presume it was the track maker because there have been fossils of it found in both Oklahoma and Texas and it is the only theropod of the right size known in the general area.

That is the good news. Sadly, there is also bad news. The Arkansas legislature is on a religious kick these days, proposing a number of unconstitutional bills. One such bill is HB 2050, “An act to amend the Arkansas code to allow public school teachers to teach creationism and intelligent design as theories alongside the teaching of the origins of the earth and the theory of evolution; and for other purposes.” They always add “and for other purposes,” no matter what the bill is, just to cover their butts. This bill is clearly unconstitutional, as already decided by McLean vs. Arkansas Board of Education in 1982 and Ktzmiller vs. Dover Area School District in 2005. As Judge Overton said in 1982, “No group, no matter how large or small, may use the organs of government, of which the public schools are the most conspicuous and influential, to foist its religious beliefs on others.” The theory of evolution is one of the best supported by mountains of evidence and exhaustive, thorough research of any scientific theory currently accepted by science, whereas creationism and intelligent design fail all efforts to make them remotely scientifically plausible. The idea they can stand side by side with the theory of evolution as valid scientific explanations in a science classroom is an insult to all thinking people.

Then there is SJR7, by Senator Jason Rapert (the same man who, among other things, was responsible for the Ten Commandments monument being built on the Capital grounds), calling for Congress to  propose an amendment to define marriage as between one man and one woman.  Because the Supreme Court of the United States has already made same-sex marriage legal throughout the country, the Arkansas legislature wants Congress to overturn their ruling. This is based on their religious beliefs and ignores a number of facts, such as it not actually being supported by the Bible, it violates the First Amendment by pushing a specific religious view onto everyone, and most importantly for our purposes here, ignores biological reality (and why I am talking about it here). Humans are not just male and female. There are several ways that genetics and development can intertwine that cause a mixture of male and female, making separation into a binary sex impossible. This bill would make it illegal for them to marry at all. Moreover, the bill does not define “man” or “woman,” making it ambiguous whether people who are biologically one sex, yet identify as the other, are banned from marriage. Considering that what gender one identifies with and is attracted to has a strong biological underpinning and is not a “lifestyle choice,” there is little to make this bill viable through any explanation other than prejudice.

In relation to that bill is SB346, by Senators Greg Standridge and Gary Stubblefield is a bill to require people in public schools to use the bathrooms that match their biological sex. To begin with, these two senators do not know the difference between gender (sociological) and sex (biological). Secondly, they have no answer for intersex individuals who cannot be easily classified as male or female other than they are not allowed to go to the bathroom at all, which has been the unfortunate situation at some schools for transgender children. This bill was pulled, but another was filed by Senator Linda Collins’ Smith targeting government buildings. Apparently, the backlash from the state LGBT supporters, business owners, and the governor were not sufficient to dissuade the legislature they needed to act against an imaginary scourge.

And of course, this list would not be complete without trying to make the Bible the official state book, as attempted by Rep. Tosh in HR 1047. He, of course, touts the myth that “the Bible form the basis upon which our modern civilization is structured,” pretending that he is simply supporting the Bible for purely historical reasons. He goes on to say that the Bible is “considered by many to be a book of truth,.. is widely read,” and why not throw in that we have a bunch of other state symbols, why not a religious book too?

All of these bills at the very least face constitutional challenges and have already been ruled as unconstitutional in other court battles. All this will do is cost the state a fortune in legal bills and drive away tax dollars as businesses leave the state and tourists opt to go elsewhere. Moreover, it seriously harms science education as we continuously have to battle this form of ignorance.


UPDATE: Now that the legislature has finished this session, how much damage did they get done? In terms of what has been mentioned here, not a lot, thankfully.

HB 2050: This bill to allow creationism in the schools died on the vine. It was referred to committee, but the author of the bill never provided a full bill for the committee to read, so the session ended without further progress, meaning that the process will need to be started from scratch next year. WIN

SJR7: This resolution to ask the US Congress to approve an amendment to the constitution making marriage as between one man and one woman failed to pass after three attempts. The truly scary thing is that it got 50 votes, only 1 short of passing. WIN

SB346: The notorious bathroom bill never made it out of committee. WIN

HR 1047: The House resolution to make the Bible the official state book passed the House with a unanimous vote. Yes, you read that right. Not a single representative voted against it. Thankfully, this was only a resolution with no legal authority and the Senate will not vote on it until the next session, but still. Of course, what can one expect in a state which still says in the state constitution that an atheist cannot hold public office nor be considered competent to testify in court? LOSE.

In other news, HB 1040 prohibiting Sharia law from being enforced passed both houses of the legislature and signed by the Governor. The irony of this is that it was never legal in the first place. Our legal system just doesn’t work that way. This was just another bill to demonize Muslims. LOSE.

If you are teaching in a college, pay close attention to your students and don’t rile them up. A new law passed by the legislature and signed into law allows students to carry guns on campus, but good news, they still are not allowed to bring them into football stadiums because allowing them to do so might jeopardize Arkansas’s standing in the Sun Belt conference. Seriously.

Arkansas Curriculum Conference 2016

On November 4th, I presented a workshop on evolution at the Arkansas Curriculum Conference. The workshop was sponsored by TIES, the Teacher Institute for Evolutionary Science, an organization dedicated to helping teachers teach evolution, itself sponsored by the Richard Dawkins Foundation for Reason and Science.

Unfortunately, the wifi died right at the beginning of my talk, so the videos embedded in the talk were not able to be played. So for those of you who attended, and for those of you who would like to see the talk, I am posting the powerpoint file here. I know, it is incredibly overdue, but in my defense, the world took a sharp turn into weirdness right afterwards and then we had Thanksgiving. Any of you who are teaches or students also know what a crazy time of year this is. At any rate, here is the powerpoint. I will see about trying to record some audio for it at some point, along with the other talks I have meant to put up. We will see how that goes over the holidays.

If you go to the TIES website, you will see a version of this talk. I have modified it to include more information on fossil formation, which I skimmed over, for the most part, in the workshop itself. I focused more on the slides discussing why learning evolution is important in the first place. It has far more everyday impacts than most people imagine and is well worth understanding even if one believes in creationism or doesn’t care about esoteric biological concepts at all (for instance, if you are a cutting edge software or robotics designer).


In addition, there are a couple of other things I wanted to post. First is an icebreaker activity that TIES provided. In this activity, participants determine whether or not a series of statements about evolution are true or false. In a twist that catches most people off guard, they are ALL false. They are all commonly held beliefs about evolution, but they are all wrong, which makes a good way to start a conversation about the topic.


Here are the statements and a very brief explanation of why they are wrong, as supplied in the document. Further clarifications and discussions are happily supplied upon request.

1. Charles Darwin developed the theory of evolution.
The theory of evolution existed before Darwin; it was Darwin’s Theory of Evolution by Natural Selection that became widely accepted.

2. Living things adapt to their environment.
As a whole, living things are adapted to their environment. Individuals are unchanging, they either live or die based on the traits they are born with.

3. Biologists “believe” in evolution.
Science is not based on belief. The theory of evolution provides a model for scientists to understand the relationships between organisms on the planet.

4. Monkeys will eventually become human.
There are many species of primates and all are adapted to their environment. A chimpanzee would not turn into a human over time anymore than a cheetah would turn into a lion (or vice versa).

5. Evolution is JUST a theory.
Saying that it is “just” a theory implies that it is a guess, or that its not well supported. There is much evidence to support the theory of evolution, as well as direct observation of species change.

6. Only atheists accept the Theory of Evolution.
Scientists of many religions across the world accept evolution, and do not find it incompatible with their faith.

7. If evolution is disproven, creationism must be true.
A problem with logic (disconfirming evidence). Even if you disproved evolution, you would have to develop and support another model of organism diversity. Disproving one, doesn’t
prove the other.

8. No one has ever seen evolution happen.
In organisms that reproduce quickly (like bacteria) changes in species can be directly observed, such as resistances to antibiotics.

9. Order cannot come from disorder, so evolution is false.
Many instances in nature show molecules and substance organizing, such requires energy. The sun provides the energy that ultimately fuels all of life’s processes.

10. There is evidence that dinosaurs lived with humans.
There is no evidence that suggests humans and dinosaurs lived at the same time.

11. Scientists regularly debate that evolution occurs.
Scientists debate elements of evolution, relationships between organisms, and fossils. The only place the evolution debate really happens is in the social settings.

12. Creationism is a valid scientific theory and should be presented with evolution. Creationism violates the scientific principle of natural causality.

13. There are no transition fossils. Museums are filled with fossils that show intermediate species.

14. Carbon dating is not accurate, therefore the age of the earth cannot be determined.
Carbon dating is one of many methods used to date the earth. Taken as a whole, the evidence is overwhelming that the earth is very old.

There is also a dice game that I want to share with you demonstrating how natural selection works, but that will have to wait until next post.


Prehistoric Shark Week, Day 5: From Whence the Great White?

Greetings and welcome to the final day of Prehistoric Shark Week! All week we have covered sharks that swam in Arkansas during the Cretaceous Period. The dinosaurs get all the press, but we had a diverse marine ecology during that time. Last week, we met a few of the non-shark denizens, such as mosasaurs, elasmosaurs, and more. This week, we have seen nurse sharks, goblins, sand tigers, and an array of rays, skates, and angel sharks. We wrap up the festival of marine animals with the question that everyone wants to know. Where did the most famous sharks of all time, the Great White and Megalodon, come from and how does Arkansas play into this?


A collection of galeomorph sharks that made their home in Cretaceous Arkansas and much of the world’s oceans, appropriately scaled.

The Great White, or simply White Shark, is named Carcharodon carcharias, meaning sharp tooth pointer, although more popularly named for its white belly, is well known as the largest living predatory fish in the sea, reaching up to and, probably over, 20 feet. Megalodon, listed either as Carcharocles megalodon or Carcharodon megalodon, depending on whether or not one believes it is directly related to or convergent with White Sharks, is the largest known predatory fish ever, reaching sizes up to three times that of the White Shark. It appeared in the fossil record about 16 Mya, but went extinct 1.6 Mya (contrary to what a fictitious documentary on the Discovery Channel claimed).

During the Cretaceous, the southwestern part of the state was covered by the Western Interior Seaway, which for us, was essentially equated to having the Gulf coast not just on our doorstep, but flooding it. Those waters were warm, rich in nutrients, and a hotbed of marine life. In those waters, a few sharks of interest made their home.

All of the sharks we will be talking about are lamniform sharks. These sharks are known for being at least partially endothermic, meaning they used their core muscles to create their own heat and maintain an elevated body temperature, giving them the ability to be active hunters even in cooler waters. Of course, it also meant they were hungrier, needing more food, keeping them always on the prowl. This is what allows the White to be such a fearsome hunter today, giving it the power and energy to breach completely out of the water during attacks.

Squalicorax is an extinct shark of the time that is commonly thought to have resembled Whites. These sharks got up to five meters, although they were typically around two meters. Squalicorax is also called the Crow Shark, which some people have speculated it got that name from evidence of its scavenging. However, squalus means shark (and is the scientific genus name for dogfish) and corax means crow, so the name Squalicorax literally means crow shark. Squalicorax_pristodontus_Agassiz,_1843_1Now as to why it was named that way to begin with, no one knows because when Agassiz named it in 1843, he didn’t leave a record as to why. They hunted and scavenged a wide range of animals, everything from turtles to mosasaurs. Unfortunately, the relationships between Squalicorax and other lamnids is uncertain, so whether or not it could have been ancestral to anything, much less Whites or megalodons, is unknown at present.

Another candidate is a shark named Isurus hastalis, an Oligocene shark that lived 30 Mya. Isurus also includes the modern day mako shark. However, a researcher by the name of Mikael Siverson concluded that the Isurus teeth were not makos, but worn down teeth similar to modern Whites. So he changed the name to Cosmopolitodus. It has also been suggested that these sharks originated from a shark called Isurolamna, which lived in the paleocene 65-55 Mya.


Possible evolutionary sequence of the Great White.

A more recent view, and one which I back (with freely admitted bias because it allows me to say they evolved from Arkansas sharks:) ), is that both Whites and megolodons evolved from an extinct lamnid called Cretolamna, the Cretaceous lamna. This shark had large, strong teeth and was very successful. It had a worldwide distribution and lived from the Cretaceous to the Paleocene. Cretolamna fossils have not been reported in Arkansas thus far, but they were a member of the family Cretoxyrhinidae, of which the shark Serratolamna was a member. The teeth of Cretolamna and Serratolamna are extremely similar, as one might expect from genera in the same family. However, Serratolamna teeth have serrations and Cretolamna does not, making Serratolamna teeth closer in shape to the White Shark. Serratolamna did not have the same worldwide distribution and did not last as long as long as Cretolamna, though. It is impossible to tell which one was directly ancestral to the later sharks, but Cretolamna, due to its more cosmopolitan range, has gotten the nod. It was named first and is much better known than Serratolamna, giving it an edge when people find and identify fossil shark teeth. Thus, it is not a big stretch to say that Serratolamna, or a very close relative, eventually evolved into Carcharodon carcharias as well as Carcharocles (or Carcharodon) megalodon.


Serratolamna gafsana. Wikipedia. Photo by Hectonichus.

I hoped you have enjoyed Prehistoric Shark Week and the previous week of Cretaceous Arkansas marine predators. Let me know if there is another group that you think deserves special consideration for a celebratory week.

Day 4 of Prehistoric Shark Week: Sand Tigers

For Day 4 of Prehistoric Shark Week, I would like to mention another modern day shark that has been around since the Cretaceous: the sand tiger sharks. Tomorrow, I will discuss a couple of Cretaceous sharks that may be the ancestors of the two most famous sharks in the world – the Great White and the giant Megalodon.


Carcharias taurus. Wikipedia. Amada44.

carchariasThe Sand tiger is a common shark in the Cretaceous sediments, or at least, their teeth are, which means they were probably pretty common back then.  The teeth tend to be long and thin, with two small cusps on either side of the large, center blade. reports that the center blade is smooth-edged with a strongly bilobed root, large bulge in the center of the root (aka lingual protruberance), and nutrient foramen in the center.

There are actually two sharks that are often called sand tigers in the Cretaceous rocks. One is Carcharias holmdelensis, the Cretaceous version of Carcharias taurus, the modern day sand tiger shark. Also going by the name grey nurse shark, amid several others, sand tigers are large-bodied sharks that will eat pretty much anything, but since it is a fairly slow and placid shark most of the time, it doesn’t seem to go after anything that requires a lot of effort. They are known for gulping air to allow themselves to float in the water column without expending much effort. So although they look scary, they appear to be too lazy to live up to appearances.


Odontaspis ferox

The other shark that gets called a sand tiger, is Odontaspis aculeatus, one of the ragged toothed sharks, which also go by the name sand tiger. These sharks were until recently in the same family as Carcharias, but have since been pulled out into their own family. They are very similar, as one might has guessed from the numerous times these sharks have been grouped and split over the years. As put it, “Chaos reigned until Leonard Compagno examined museum specimens from all over the world, corrected misidentifications and sorted out synonyms.”


Prehistoric Shark Week, Day 3: Flat Fish

For Day 3 (a little late, yes) of Prehistoric Shark Week, I want to bring to your attention the diversity of chondrichthyans that have opted for a flatter bauplan.



Ray tooth

Sharks are generally split into two groups, the galeomorphs, which are mostly the more typical torpedo-shaped sharks, including the sharks that most people think of when they envision a shark. The other group is the squalimorphs. These sharks lack an anal fin and many of them have developed a penchant for flatter bodies and broad pectoral fins, and in some cases pelvic fins as well (although not all, such as the dogfish and frilled sharks). Up until recently, the batoids, otherwise known as skates and rays, were considered part of this group, the consensus being that they were a more specialized type of squalimorph shark that had taken flat to an extreme. But the most recent molecular studies have indicated that they are a group unto themselves. The batoids have a long fossil history, with a number of ray teeth found in the Cretaceous deposits of Arkansas, particularly the eagle ray family Myliobatidae. Their teeth are typically flat rectangles on top with a comb-like surface below. Another type of ray that can be found are the guitarfish, or Rhinobatos casieri. These pectoral fins of these fish extend to their head, giving them a triangular shaped front end of a more traditional shark-like back end.


Shark classification.


Skates and rays are generally very docile and would not be very threatening, spending their time scrounging about on the sea floor for benthic (living in or on the sea floor) invertebrates and the occasional fish. The same can’t be said for the last member of this group, the sawfish. Armed with a rostrum (its elongated snout) with teeth out to the side, the fish looks like it has a chain saw for a nose. The sawfish will swim into a school of fish and thrash its rostrum rapidly back and forth, spearing and stunning several fish, which it can then gobble up. They can also use it to dig up clams and crabs from the sediment. While they won’t attack humans, any human who provoked one may easily wind up perforated by the rostrum, probably not deadly but certainly painful. Most modern sawfish reach a respectable two meters, but the largest species, the green sawfish (Pristis zijsron) can top seven meters (24 feet). This is as large as the Cretaceous versions. Modern sawfish are typically put into the family Pristiformes. The Cretaceous ones are in their own family, called Sclerorhynchiformes and are not directly related, in that the Cretaceous ones are not thought to be ancestral to the modern ones. They are both put into the group Pristirajea, so they are thought to at least be related. But with the uncertainties in the relationships of the modern fish, the relationships with fossil forms are necessarily less certain. In any case, Arkansas sports several different species from this group, including Schizorhiza stromeri, Sclerorhynchus sp., Ischyrhiza mira, Ischyrhiza avonicola, and Ptychotrygon vermiculata. We were postively awash in sawfish.

Onchopristis numidus black JCS

Onchopristis. Cretaceous.

The true squalimorph sharks that have shown up in the Arkansas Cretaceous rocks are best represented by the Angel shark (Squatina hassei), which looks like an early rendition of a skate, so it is little wonder that most researchers viewed skates and rays as simply more specialized versions of these sharks. Nevertheless, it appears this is case of convergence, not homology (similarity due to relationship). If it is homologous, it isn’t directly so. It is possible both groups had a common slightly flattened ancestor and each took their own route from there.


Rhinobatos hakelensis. Cretaceous guitarfish.

All of these fish are pretty docile hunters, scrounging around the sea floor for benthic organisms, all those animals that make their home in or on the sea floor sediments. They spend their time digging around the sand for crabs, clams, and other invertebrates, the occasional fish. When threatened by the presence of a predator, they hide on the bottom, using their shape to help them blend in with the seafloor. Neither the ones today or the ones in the Cretaceous would have bothered a human swimming around them.

Becker, Martin A., Chamberlain, John A., Wolp, George E. 2006. Chondricthyans from the Arkadelphia Formation (Upper Cretaceous: Upper Maastrichtian) of Hot Spring County, Arkansas



Prehistoric Shark Week, Day 2: Goblins

For Day 2 of Prehistoric Shark Week on paleoaerie, we are going to take a look at my personal favorite shark. In the late Cretaceous, it was called Scapanorhynchus, the spade snout. But its closest living relative is called Mitsukurina owstoni, also known as the goblin shark. The perfect shark for Halloween.


Scapanorhynchus lewisii. Wikipedia

Scapanorhynchus means spade snout, so named for the elongated, flat snout, the same feature which got the modern shark named goblin. Most of them are small, less than one meter, but can get in excess of four meters. Spade snouts were some of the earliest sharks in Neoselachii, the modern sharks. One of the things this means is that they did not just have straight cartilaginous skeletons, they calcified most parts of the skeleton to reinforce the cartilage. They didn’t make true bone, but the calcium spicules provided more strength for the cartilage.


Scapanorhynchus (1)

Scapanorhynchus texanus.

220px-ScapanorhynchusCretaceousIsraelTwoGoblin shark teeth are long and thin, looking like a mouth full of curved needles. But what most people are fascinated by is the amazing length to which they can protrude their jaws. Modern sharks have what is known as hyostylic jaws, meaning that the jaws are not directly connected to the skull. Instead, they are attached at the back of the jaws on an intermediary bone that allows the jaw to swing forward. All sharks can do this to an extent, but the goblin shark is expecially known for it.

The modern goblin sharks are generally only found in deep water. Its Cretaceous cousins, on the other hand, were widespread in shallow marine areas. Like many fish in the Cretaceous, they seem to have survived the mass extinction even at the end of the Mesozoic by going deep.

Prehistoric Shark Week

This week we will celebrate fossil sharks of the Mesozoic that have been found in Arkansas. Because all of our surface rocks of the period are from the Cretaceous, the sharks are limited to that time. There are other cool sharks from the Paleozoic, but they will have to wait for another time. Hunting for shark teeth in Arkansas can best be done in the chalk formations called the Annona and Saratoga in southwest Arkansas. But you can also find them in several other formations as well.

Many of the sharks found in the Cretaceous in Arkansas have contemporary species. While the species may vary, the genus name is very long-lived. For those who are unaware, scientific names follow a binomial system, with a genus and a species name, the genus being the first name and indicating a group of very closely related species. It is next to impossible to tell the difference between species of sharks just by their teeth unless, and many times even if, one is an expert, so I will be sticking with the genus names.

To begin the week, I present to you Ginglymostoma, the nurse shark.


The scientific name comes from the shape of its mouth. The origin of the name nurse shark is not clear, but it is considered likely to have originated with the Old English word Hurse, for sea floor shark.

Known for its puckered mouth and barbels on the sides of its mouth, nurse sharks spend most of their time near the sea floor scrounging for whatever small animal they can catch. They are very docile and will only bite if provoked. Humans are far too big for nurse sharks to be interested in, so unless one really goes out of their way to annoy a nurse shark, you’re pretty safe, even from the largest ones, which can get over 4 meters.


Enter your email address to follow this blog and receive notifications of new posts by email.