paleoaerie

Home » Paleontology » Fossils of Arkansas » Mystery Revealed: A Common Coral in Arkansas

Mystery Revealed: A Common Coral in Arkansas

It is the unfortunate fact of life that volunteer efforts are all too often derailed by other pursuits. Such is the case for last week’s Mystery Monday fossil. Nevertheless, the answer shall be forthcoming. If you have been paying attention to the Facebook feed, you will know that the fossil presented last Monday was identified. Were you able to figure it out?

mysteryfossil2015

This is a large, very well preserved piece of tabulate coral. Corals are colonial species that are very important in modern ecosystems. A fourth of all ocean species live within these reefs. They form the backbone of reefs that are among the richer areas of biodiversity on the planet. Billions of dollars each year are pumped into local economies across the world.

What we think of as coral is mostly the calcareous homes they form, within which the animals live. The actual animal is a tiny animal in the Phylum Cnidaria. Cnidarians are soft-bodied animals, the best known of which are the jellyfish and sea anemone. Cnidarians take two general forms. Medusae are free-floating forms like the jellyfish. Coral and sea anemones are polyps, mostly stationary, or  “sessile”, forms that remain in place their entire lives. Corals, like other cnidarians, are predatory, catching their prey with tentacles armed with nematocysts, cells containing potent poisons to immobilize or kill their prey. Of course, since corals are tiny creatures themselves, they prey on even tinier prey. The tentacles surround an opening which serves as both mouth and anus, basically making the animal a living, carnivorous sack. This is not the only way corals get food though. Most modern corals also have a symbiotic relationship with single-celled algae called zooxanthellae,  which provide essential nutrients for the coral in which they live. Unfortunately, when the coral gets too stressed from increasing temperatures or other causes, they tend to respond by evicting the zooxanthellae. Because the zooxanthellae are what gives corals their bright colors, this is known as coral bleaching.

Generalized septal patterns  within Hexacorallia. Tolweb.org/zoantharia

Generalized septal patterns within Hexacorallia. Tolweb.org/zoantharia

While there are several different kinds of coral, most of the coral people are familiar with are the stony corals, or Scleractinia, because these are the ones that build the reefs. They are part of the larger group of corals known as Hexacorallia (at least, if you are talking to modern biologists, paleontologists often restrict Hexacorallia to scleractinians), known for often having the individual coral homes partially divided with six partitions, or septa (although you may be hard pressed to identify the three axes forming the six partitions even if they are present in that number).

Red Road flats. Glasgow. Wikipedia.

Red Road flats. Glasgow. Wikipedia.

The scleractinians have only been around since the Mesozoic however. They did not build the coral reefs of the later Paleozoic Era. That distinction goes to the rugose, or horn, corals and the tabulate corals, such as the example above. Tabulate corals are known for the corals being aligned in horizontal stacks. The image above should really be rotated 90 degrees to get the life position. This stacking always reminds me of apartment building, particularly cheap tenement housing, or wire mesh. According to phylogenetic studies on modern corals, it appears that the earliest scleractinians did not have zooanthellae, the symbiotic relationship evolving later, so it seems likely tabulate corals didn’t either. Tabulate corals appeared in the Ordovician Period roughly 450 million years ago. They started dying out in the Permian and finally succumbed to extinction at the end of the Permian period 252 million years ago, along with most other life on the planet. However, it is a bit misleading to say they went extinct. It is thought that the modern scleractinians that arose in the early Triassic are descended from tabulate corals, so they appear to have evolved, rather than just died out.

If you want to find corals such as this in Arkansas, one need only travel anywhere in most of the northern part of the state. The Ozark Mountains are predominantly formed from shallow marine Paleozoic rocks. Anywhere you find limestone in the Ozarks, keep your eyes peeled for samples of this type of coral. They are invertebrates, so as long as you are not collecting in a National Forest or private property without the owner’s permission, you are free to collect them.

Tabulate coral found near Hiwasse, Arkansas. "Syringoporid" by Wilson44691 - Own work. Licensed under Public Domain via Wikimedia Commons

Tabulate coral found near Hiwasse, Arkansas. “Syringoporid” by Wilson44691 – Own work. Licensed under Public Domain via Wikimedia Commons


Comments are welcomed, although please be considerate. This site is moderated and rudeness will be ruthlessly eliminated.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: