paleoaerie

Home » Mystery Monday

Category Archives: Mystery Monday

The Long Delayed Fossil Segment

A reader by the name of Allie Valtakis successfully identified the fossil last week as worm burrows and another reader further identified them as Serpulid tubeworms. Great job!

Here is the picture again for those who did not see it. The picture comes from Donald Hattin’s “Stratigraphy of the Carlile Shale (Upper Cretaceous) in Kansas: Kansas Geological Survey, Bulletin 156, 1962. Plate 13.

ksserp

It is listed as Serpula semicoalita Whiteaves, encrusted upon fragment of Inoceramus cuvieri, middle part of Fairport (Loc. 37), x1/2, hypotypes, KU1202062J1.

In 1984, Norman Sohl and Carl Koch reported finding an unidentified Serpula species in Hempstead County, near Hope, in the Arkadelphia Marl, a Cretaceous limey mud well known for its shallow marine fossils. Numerous Exogyra oysters and Gryphaea have been pulled from the mud there, along with a variety of other fossils. On this particular occasion, they found, lithophagid borings, pycnodontes, Exogyra costata, Gryphaeostrea, Crassatella, Anchura, Discoscaphites, Clione, and last, but not least, Serpula. Sadly, they provided only a faunal list and not a single picture in the entire report. They provide a map on page three of the localities, but that is it. How one writes a report 282 pages long, consisting of one illustration, two tables, and 270 pages of lists of fossils without a single illustration of anything collected is truly a mystery to me. At any rate, here is the citation, the actual report is at the link provided above.

Sohl, N. F., and Koch, C. F., 1984, Upper Cretaceous (Maestrichtian) larger invertebrate fossils from the Haustator bilira Assemblage Zone in the West Gulf Coastal Plain: Open-File Report.

Rudman, W.B., 2004 (July 27) Polychaete Worms (Bristle worms). [In] Sea Slug Forum. Australian Museum, Sydney. www.seaslugforum.net/find/polychaete

Rudman, W.B., 2004 (July 27) Polychaete Worms (Bristle worms). [In] Sea Slug Forum. Australian Museum, Sydney. http://www.seaslugforum.net/find/polychaete

So what are serpulids anyway? They are annelids, meaning they are segmented worms, just like earthworms. But unlike earthworms, these are polychaetes, or bristle worms, so a lot of them look like pipe cleaners. Serpulids in particular are marine and sessile, meaning they like to stay in one place and attack themselves to a surface.

They are rather unusual for worms in that they are important biomineralizers. They make long calcium carbonate tubes in which they can pull themselves into when threatened. Unlike other tubeworms, serpulids even have a lid, called an operculum, they can close the tube with. While they are common in shallow marine settings, the pictures most people have seen of them have come from nature documentaries showing the ones that live near hydrothermal vents because they have an unusually wide range of thermal and pressure tolerances, with species living throughout the oceans.

A colony of tube worms, some as long as 1.5 m, clustered around an ocean floor hot spring. (Photograph by Daniel Fornari, Woods Hole Oceanographic Institution.)

A colony of tube worms, some as long as 1.5 m, clustered around an ocean floor hot spring. (Photograph by Daniel Fornari, Woods Hole Oceanographic Institution.)

Serpulids don’t get nearly as big, with the largest modern ones rarely getting more than about 150 mm in length and 5 mm wide, although they cause more problems, seeing as they live in shallower water and like to attach themselves to boats. They will also attach themselves to clams, coral, rocks, and pretty much any other surface they can find.

By Nhobgood Nick Hobgood - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6300216

By Nhobgood Nick Hobgood – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6300216

The fossil record of serpulids goes back to the middle Triassic, but the only record of them in Arkansas is the one from the Cretaceous. There are reports of possible annelid tracks in the Ordovician rocks of the Ouachitas, but that would be too early for serpulids and without any fossils to back them up, the tracks could well be anything. Polychaetes make for terrible fossil makers, as they are mostly soft tissue and fall apart into mostly unrecognizable chitin pieces quickly after death, making serpulids unusual for the group. The tubes they make give them a far better chance at making it through the fossilization process, so they show up disproportionately in the fossil record compared to their kin.

Tubeworms like this are filter feeders, but some other polychaetes are carnivores, which is all that Hollywood has needed to turn deep sea tubeworms into this. Gotta love B-grade monster movies.

deeprisingwhatchodoin2

 

It seems that I will not be able to consistently get the explanatory posts out as timely as I would like for the mystery fossils. So what I think I am going to do in the future is to continue to put them on Facebook as mystery fossils, but I will skip the initial post here. So if you want to follow the attempts to recognize the fossils before I post them on the blog, follow the Facebook feed and get a jump on the blog posts. Speaking of the Facebook page, I have found the the later Google Chrome updates have somehow broken the Facebook link on the website, so the Facebook posts are no longer showing up on the page as they are supposed to. They work correctly on Internet Explorer, so I do not know why they aren’t working on Google Chrome. I am not a computer programmer, but I will see what I can do about that, although that may just have to wait until the revamp of the site, which I am planning. In the meantime, I appreciate your patience and thanks for reading.

 

Fossil Monday, A New Segment

Here is a new fossil for you to identify. I haven’t put up anything like it before, so you can rule out any of the usual candidates. I will put up the answer next Monday unless some early bird beats me to it. Good luck.

ksserp

Fossil Friday: Stuck on the Rocky Shores

So were you able to identify our fossil this week?

arfossil2

This if Figure 5 from the only real publication on Arkansas fossil barnacles. I posted an articles on barnacles once before, but time grew short and I neglected to mention specifically the Arkansas ones, an egregious error on a website devoted to Arkansas fossils. So I am now correcting that with this post.

As I mentioned in the last post, barnacles are crustaceans and have been around since the Cambrian Period. They can be found throughout much of the Northwest half of the state, basically anywhere not carved out by the Mississippi river. However, other than some miscellaneous purported barnacles borings on clam shells and the like in the Ozarks and Ouachitas, there is not really any published literature on the subject.

For published information, if you really want to know about barnacles, you need to talk to Victor Zullo at the University of North Carolina, Ernest E. Russell of Mississippi State University, or Frederic Mellon. Sadly, you will find that difficult as they are all now deceased, leaving the field of Arkansas cirriped studies completely wide open to the prospective student.

In 1987, the trio published a paper detailing two new species of barnacles found in a quarry in Hot Springs County, Arkansas. The first barnacle was identified as being in the suborder Brachylepadomorpha and was named Brachylepas americana. They listed this as important as being “quite possibly the richest single accumulation of brachylepadomorph material ever encountered.” They also suggest that because of its similarity to other species in Europe that there was “unrestricted communication between these widely separated geographic regions during late Campanian time.”

zulloarbarnacle

Another thing I found interesting about these barnacles is where they were found. Thousands of these fossils were found in a gravel within the Brownstone Formation, dated to the Late Cretaceous, and deposited in a littoral environment. This is a high energy, near shore environment. The living representatives of this group, though, are only found near hydrothermal vents.

The other barnacle they discuss and the one which is shown in Figure 5 above is Virgiscalpellium gabbi and a subspecies V. gabbi apertus. These are only known from nine specimens however, unlike the thousands of B. americana. This seems to be a much less common species throughout its range than other barnacles.

Along with the barnacles, the trio mention the Brownstone Formation is rich in fossils of other types, including, the oyster Exogyra ponderosa, several gastropods, a sponge, brachiopod, serpelid worm, bryozoans, nannoplankton, and the odd vertebrate, such as mosasaurs, sharks, and skates.

Zullo, Victor A., Russell, Ernest E., and Mellen, Frederic F. 1987. Brachylepas Woodward and Virgiscalpellium Withers (Cirripedia) from the Upper Cretaceous of Arkansas. Journal of Paleontology. Vol. 61(1):101-111.

Mystery Monday, a Sticky Wicket

It has been a long time since I have posted a new mystery fossil. I will kill two birds with one stone today by revisiting a type of fossil that I have shown before, but for which I neglected to provide some specific Arkansas detail. See if you can figure out what this is and tune back in Friday to find out what I didn’t say last time.

arfossil2

 

Mystery Monday, Halloween edition

I haven’t posted a mystery fossil this fall, much to my own disappointment. But I have the perfect specimen for this week. With Halloween this Saturday, I had to post this one. See if you can figure out what it is. Check back Friday for the answer.

Ohio Historical Society

Ohio Historical Society

I couldn’t find a picture of the Arkansas fossils, so one from Ohio will have to do.

Getting Antsy for the Answer to last Week’s Mystery Monday?

Last week we posted a new fossil. Were you able to figure it out?

LaPolla2-1

This particular picture is of the ant, Nylanderia vetula, caught in Dominican amber. Dominican amber is from the Miocene, currently thought to be about 25 million years old. The fossil ants from Arkansas are a bit different.

In 1974, ants were found in amber collected near Malvern, Arkansas, from the Claiborne formation, which is listed as being from the Eocene, roughly 45 million years ago (give or take 3 million years). According to the Arkansas Geological Survey, the Claiborne is a series of fine sand to silty clay layers, with interspersed layers of lignite. The lignite and amber are clearly indicative of terrestrial environments, although there are some marine sediments within the formation. A number of fossils have been found in the formation, including fish and reptile bones and teeth, leaf impressions, trace fossils, and of course, wood and amber.

The specific ants that have been found were identified as Protrechina carpenteri. These ants are in the group Formicinae, one of the more common ant groups. Interestingly, the Eocene ants were anything but common. Ants during this time shifted from the earlier ants to a more modern collection of species. They were quite diverse, with Phillip Ward reporting that David Archibald claimed some of them were the “size of small hummingbirds”.

Titanomyrma lubei (not from Arkansas).

Titanomyrma lubei (not from Arkansas).

Images of our Arkansas fossil ant are hard to find, as in, I couldn’t find a single image. However, if you want to see the real thing, go to the Harvard Museum of Comparative Zoology, where Antweb.org reports it is being held. Yet another Arkansas fossil in the hands of another state.

Mystery Monday

Time for a new Mystery Monday fossil. The fossil on display here was found in Dominican amber, as well as Russia. But it has also been found in Arkansas and played a role in our understanding of the evolution of this group of animals. Leave your identifications in the comments section and come back Friday for the answer.

LaPolla2-1

Basilosaurus, the Bone Crushing Whale That Was Mistaken For a Lizard

Last week we saw this vertebra and lower jaws of Basilosaurus.

harlanfa

Owen-Basilosaurus-vertebra

The history of Basilosaurus is intimately tied to Arkansas. Alabama and Mississippi may have claimed Basilosaurus as their state fossil (and indeed the fossils are much more common in those states), but it was an Arkansan that found them. Judge Bry found some bones in the Louisiana portion of the Ouachita River in 1832 and sent them to Dr. Richard Harlan at the Philadelphia Museum. After examination of these bones, along with more bones sent by Judge Creagh from Alabama, Dr. Harlan noted similarities with plesiosaur vertebrae, only twice the size, so in 1834 he named the animal Basilosaurus, king of the reptiles.

In 1838, more bones were discovered in Arkansas, near Crowley’s Ridge. E. L. Palmer published a brief note on them in 1839. Meanwhile, Dr. Harlan had taken his bones to the United Kingdom to see the esteemed Sir Richard Owen, the most prominent paleontologist of his day (even today, he is considered one of the most important researchers in the field). Sir Owen found that the bones were not from a reptile at all, but from a whale. Therefore, he proposed changing the name to Zeuglodon. However, the rule of precedence requires the first name to take priority, so Basilosaurus it is.

whaleevo

Basilosaurus has an important place in the study of whale evolution. In addition to being the first primitive whale identified, Basilosaurus was the first true whale that was an obligate aquatic animal. Since its discovery, several other species have been found, but they all still retain enough limb function to move, however awkwardly, on land. Basilosaurus, due to its size and having no functional limbs other than some small flippers, would have been unable to move on land. As can be seen in the chart aboveBasilosaurus was not the ancestor of modern whales, though. It appears that Dorudon, a close relative, had that honor.

Basilosaurus was a huge animal, reaching more than 15 m (50 feet). Neither it nor Dorudon had the forehead melon characteristic of modern cetaceans, which indicates it likely did not have echolocation, but did have very powerful jaws, clearly indicative of its carnivorous diet. A recent (this year) study found that Basilosaurus had an estimated bite force of 3,600 pounds, giving it the strongest jaws of any mammal yet measured.

FEA analysis of a Basilosaurus skull. Snively et al. 2015. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118380

FEA analysis of a Basilosaurus skull. Snively et al. 2015. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118380

There is a bit of a problem saying how old Basilosaurus is. The original fossils from 1832, as were the Arkansas fossils,  were found in the Jackson Group, a series of intertidal to estuarine and shallow marine sediments of Eocene age, around 37-34 Mya. Another set of fossils from Crowley’s Ridge was found in 2008. However, according to marine mammal biochronology estimates, Basilosaurus should have appeared around 44 Mya. However, fossils do not generally record the first appearance of an organism. Thus, the most likely explanation is that Basilosaurus evolved roughly 7 My before the fossils we have found. The only way to solve this conundrum is to find more fossils, so get cracking.

Fossil Friday, A Whale of a Time

Were you able to figure out what the mystery fossil this week was?

Owen-Basilosaurus-vertebra

This is a vertebra, as I am sure most people could readily see. The two centra, the body of the vertebra, are flat to even a little concave, indicating an aquatic creature.

Here is a little more, showing pieces of the jaw.

harlanfa

Here is a picture by Karen Karr showing what the animal may have looked like when alive.

basilosaurus

This is a Basilosaurus. The name means “king lizard”. It is an odd misnomer, though, because it is not a reptile at all. It is in fact a true whale, one of the first to have flippers rather than legs. Fossils of Basilosaurus have mostly been found in Alabama and a few other places in the southern United States, but the partial skeleton of one was found near Crowley’s Ridge in Arkansas.

An unexpected museum trip has presented itself to me, so this post will be short, but come back Monday for a more detailed discussion of Basilosaurus, the “bone crusher”.

Mystery Monday, Not a Fish Story

I have a new mystery fossil for you this week. I thought I would put a new fossil off until next week, but considering that next week is Spring Break for many around here and that new, cool research has been published on this animal recently, I decided to go ahead and put it out there.

Owen-Basilosaurus-vertebra

This is a drawing of the vertebra made by Sir Richard Owen, one of the greatest minds in paleontological taxonomy of the 19th century. The fossil had been identified as one thing, but Dr. Owen provided a thorough and convincing discussion of why that interpretation was wrong. The name given to it was rather humorously coincidental, considering what it turned out to be. It is difficult to identify isolated vertebrae, so I’ll give you another drawing of the same animal, but different parts.

harlanfa

This image is by the person who originally described the earlier vertebra, but also includes a few more pieces.

See if you can take the images, along with my clues, and figure out what this is. We’ll see if anyone can do better than the original descriptor.