Home » Posts tagged 'ice age'

Tag Archives: ice age

Mr. Ed’s Fossil Friday

Next week is Christmas, Hanukkah started this week, there is Boxing Day, Yule, Kwanzaa, even Festivus and Hogswatch, not to mention the old classic Saturnalia and a whole host of others. Busy week for those wanting to celebrate. In honor of that, I came as close as Arkansas fossils allow to a well-known, traditional, seasonally-associated animal. Were you able to figure it out?


If you guessed reindeer, you were wrong. Sadly, there is no record of reindeer ever having lived in Arkansas that I can find. If there were, I would have used it. So no skeletons of Rudolph for us. The closest thing to a reindeer that has been found in Arkansas are fossils of the common white-tailed deer, which is so common in the state that it not infrequently becomes one with motor vehicles, much to the dismay of both deer and driver.

So what could this be besides a deer, reined or not? Reindeer are in the genus Rangifer, which are in the family Cervidae, along with deer. Cervids are artiodactyls, mammals best known for having cloven hoofs, thus the term “even-toed ungulate.” Unfortunately, Arkansas is not really known for artiodactyls either, other than pigs, and somehow, pigs did not seem an appropriate holiday animal. So what to do?

There is another animal that is often associated with the holidays, especially in the Christmas tradition, that being the donkey. I am sure you’ve heard of the story of Joseph leading a donkey upon which rode Mary to Bethelem and what Nativity scene is complete without a donkey? Donkeys, of course, are in the same genus as the horse, Equus, which are perissodactyls, the odd-toed ungulates. So allow me to introduce you to Scott’s Horse, Equus scotti, named after the paleontologist William Berryman Scott, a Princeton paleontologist known for his work on Cenozoic mammals.

Almost everyone is familiar with horses today. They stand as an iconic symbol of the Wild West, an integral image of the American cowboy and the Native Americans that roamed through the plains. Horses are also one of the most commonly used examples of evolution, with the line from Hyracotherium to Equus in virtually every evolution textbook ever written. All the discussions talk about how they got bigger and lost most of their toes as adaptations for running, and grew higher-crowned teeth to deal with the tough grasses they started to eat that replaced the softer, lush forest plants.

McFadden, Bruce. 2005. “Fossil Horses – Evidence of Evolution.” Science Vol. 307. no. 5716, pp. 1728 – 1730

McFadden, Bruce. 2005. “Fossil Horses – Evidence of Evolution.” Science Vol. 307. no. 5716, pp. 1728 – 1730

What is less well known outside of those who study evolution and paleontology is that this process was not a straight chain from tiny, forest-dwelling horse ancestor to the modern horse. The horse lineage diversified, evolving into multiple niches. This shouldn’t really be too much of a surprise, considering the diversity seen in horses today, with everything from burros and Shetland ponies to Clydesdales and zebras. Most of them died out before the modern horses we see today arrived. Scott’s horse was one of these extinct forms.

horsebiogeogeographyAnother thing that is not well known outside of paleontologists is that the modern horse originated in North America, but are not the ones living here today. Horses evolved during the Pliocene, five million years ago. Adaptations allowed them to survive the change from forests to more open, grassy plains, driving their evolution. From North America, they spread into South America through Central America and into Asia and Europe across the Bering land bridge. The Bering Sea Straits were dry at this time because the ice ages during the Pleistocene lowered water levels, allowing passage between the continents. Horses, along with many other animals, like mammoths and camels (also originally American), crossed through the land bridge to populate lands on either side.

At the end of the ice ages about 11,000 years ago, every species of the American horse, including E. scotti, died out, along with all of the other megafauna. Horses continued to thrive in South America and Eurasia, but for over 10,000 years, their North American homeland was barren of horses. It was not until the Spanish conquistadors brought them back that horses once again thrived in North America. Thus, we can thank the Spanish for bringing back a quintessentially American product.

Fossil Friday, to bear or not to bear, that is the question

It’s Friday again. Were you able to get the answer to Monday’s fossil?

downloadThe skull shown in the picture belonged to Arctodus simus, the giant, short-faced bear (the not-so-giant short-faced bear, A. pristinus, was smaller and lived in more southerly areas than A. simus).  Arctodus lived in Arkansas and much of North America during the late Pleistocene, from less than 1 million years ago up to about 12,000 years ago, when most of the large North American Ice Age fauna went extinct. Arctodus was the North American version of the European cave bear, Ursus speleaous. While the European cave bear was a close relative of most modern bears, Arctodus was more distantly related, its only living relative being the spectacled bear, Tremarctos ornatus. It is sometimes considered possibly the largest terrestrial, mammalian carnivore that ever lived, standing over 3.5 m ( 11.5 ft) tall. Even on all fours, it was almost 2 m (6.5 f) at the shoulder. You would have to get at least 4.5 m (almost 15 ft) up a tree to avoid its reach, assuming it didn’t just tear the tree down or shake you out of the tree. It weighed in at a full ton and could run 40 mph (over 60kph).  However, that is also the top range of modern Kodiak brown bears, otherwise known as Alaskan grizzly bears. In the wild, the bears don’t usually get over 1500 pounds (although they can), but the largest ever known was a bear in the Bismarck, ND zoo that weighed 2130 lbs at his death and previously weighed possibly close to 2400 lbs, although he was a very fat bear. There is another bear pelt on display at Space Farms Zoo and Museum  in New Jersey that is claimed to be from a bear over 12 ft. tall and over 2,000 lbs, but those claims remain unverified are considered by most to be exaggerated. There is another bear that may have been even bigger. Arctotherium angustidens lived in South America about three million years ago and stood almost 3.5 m tall, so similar to Arctodus and the largest of extant bears, but was much more robust, weighing in the neighborhood of 3,500 lbs.

Arctodus is generally known for its long legs and short face. However, research in the past decade has indicated that its legs were neither longer than expected, nor was its face all that short. It was simply big.  Like other bears, it is thought to be fairly solitary most of the time. Contrary to many depictions, it was not particularly adapted to running quickly, considering that modern grizzlies can run 30 mph. What may have made people think they were unusually fast is a combination of their size giving them long legs and tracks that have indicated they used a pacing gait, with the legs on the same side of the body moving in unison, rather than in opposition like most other animals. This sort of gait is typically used in animals with longer legs or at faster trots. Camels use it and dogs and cats, among others, do it when maintaining a trot before they break into more of a gallop. However, the pacing gait is not indicative of a fast-running animal, but of an animal that maintains a quick pace for long distances, it bespeaks of endurance, not speed.

Like most bears, Arctodus is thought to have been omnivorous, eating both plants and animals. There have been several hypotheses concerning its diet, from mostly scavenging to hypercarnivorism. It was certainly capable of bringing down large prey, although its limbs were not as flexible as most high level predators, nor were they particularly robust for their size, leading some to think they scavenged, although they would be hard-pressed to compete with giant vultures in scavenging and recent work indicates the tooth structure was not sufficient for chomping through bone. They may have been better suited for foraging plant material with their unusually flexible wrist giving them an almost semi-opposable thumb, much like pandas. This suggests possible tree-climbing to some workers, although Arctodus was a very large animal to be climbing trees. Besides, it typically lived in more open, grassland environments the majority of the time, so it is unlikely to have been adapted for tree-climbing.

They went extinct roughly 11,000 years ago, along with a large number of other large species. A reduction in rich food supplies is thought to have caused the extinction of the large herbivores. This would have placed a great deal of stress on the carnivores, causing increased competition. The dire wolves lost out to the modern grey wolves during this time, chiefly thought to be a result of the gray wolves being able to hunt and subsist on smaller and fewer prey than the larger dire wolves. This same reasoning would apply to Arctodus as well, which had to compete against both wolves and other bears, for a greater percentage of the share to fuel its larger body. On the other hand, evidence for this hypothesis has been lacking in analyses of tooth wear.

 If you want to see more of Arctodus, make your way to the La Brea Tar Pits in Los Angeles. many bones of this bear have turned up from the tar and are on display at the Page Museum.

Arctodus from the la brea Tar Pits at the page Museum. Wikipedia.

Arctodus from the la brea Tar Pits at the page Museum. Wikipedia.

Mystery Monday, snow edition

Mystery Monday, snow edition

The weather forecast this week is for snow. So in going with the theme lately of Ice Age animals, I thought I would bring you another one for this week’s Mystery Monday fossil. This picture doesn’t have a scale, so I will just say this skull is bigger than yours (under the assumption that all my readers are Homo sapiens or within the same size range, my apologies to the exceptionally macrocephalic).