paleoaerie

Home » Paleontology » Fossils of Arkansas (Page 2)

Category Archives: Fossils of Arkansas

Prehistoric Shark Week

This week we will celebrate fossil sharks of the Mesozoic that have been found in Arkansas. Because all of our surface rocks of the period are from the Cretaceous, the sharks are limited to that time. There are other cool sharks from the Paleozoic, but they will have to wait for another time. Hunting for shark teeth in Arkansas can best be done in the chalk formations called the Annona and Saratoga in southwest Arkansas. But you can also find them in several other formations as well.

Many of the sharks found in the Cretaceous in Arkansas have contemporary species. While the species may vary, the genus name is very long-lived. For those who are unaware, scientific names follow a binomial system, with a genus and a species name, the genus being the first name and indicating a group of very closely related species. It is next to impossible to tell the difference between species of sharks just by their teeth unless, and many times even if, one is an expert, so I will be sticking with the genus names.

To begin the week, I present to you Ginglymostoma, the nurse shark.

sk-g-401

The scientific name comes from the shape of its mouth. The origin of the name nurse shark is not clear, but it is considered likely to have originated with the Old English word Hurse, for sea floor shark.

Known for its puckered mouth and barbels on the sides of its mouth, nurse sharks spend most of their time near the sea floor scrounging for whatever small animal they can catch. They are very docile and will only bite if provoked. Humans are far too big for nurse sharks to be interested in, so unless one really goes out of their way to annoy a nurse shark, you’re pretty safe, even from the largest ones, which can get over 4 meters.

Nurse-shark-swimming

Day 4 of Paleo-Animal Fest

Welcome to Day 4 of Paleo-Animal Fest, celebrating the creatures populating the Arkansas seas during the Cretaceous. Today we are going to look at a fish that has survived for an amazingly long time. They first appeared in the Late Cretaceous and have survived to the present day, still thriving. You can find them in many freshwater lakes and rivers, especially brackish and hypoxic (low oxygen) waters, even into marine waters on the occasion. They are a tough predator in many ways, from their durability in the fossil record to their physical defenses and their intimidating jaws. I am of course talking about gars.

gatorgar_taylor_trinity

This thing looks like a prehistoric crocodile. My.core.com/~garman/garanglershome.htm

Gars are piscivorous, meaning they eat other fish. The most common description of them is “voracious predator.” They are known for their tooth-filled jaws, scales of armor, and their fight. Their typical mode of attack is a lightning-quick sideways bite. Gar fishermen are often called “not right in the head.”

Gars can be found in many places within North America, but their fossils can be found all over the world. The vast majority of the fossils have been identified as Lepisosteus, which includes the longnose, shortnose, spotted, and Florida gar. However, most of their fossils are isolated scales, which makes it difficult to impossible to tell what type of gar it is from. So I am going to go with most people’s favorite gar, Atractosteus spatula, the alligator gar (pictured above). It is the biggest one reaching almost 3 meters. Another impressive armored, ancient fish that is still around is the sturgeon, which can get a lot bigger, but are nowhere near as impressive in the teeth department.

ganoid1

Ganoid scales

There are not a lot of skeletons of gars with heads and tails, but there are a lot of body pieces covered in scales. Gar scales are thick, rhomboid-shaped ganoid scales, meaning they are covered in what is effectively enamel. The scales form an excellent armor, making handling them hard on the hands. They are so tough and dense, in fact, that the scales have been used as arrowheads and make even CT scans on gars hard to impossible to get decent views. On the plus side, this results in them having excellent preservational potential and can be found quite commonly. The scales make the fossils really stand out and readily identifiable to at least the group Lepisosteiformes.

GarFishFossil

Lepisosteus simplex. FossilMuseum.net

By far, the most complete and detailed description of gars ever published is by Lance Grande, the universally acknowledged leading world expert on fossil fish, called “An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei.” Special publication 6 of the American Society of Ichthyologists and Herpetologists, published in 2010. This is a massive tome, amassing almost 900 pages of detailed observation on gars. This book is a companion to a similar volume he did on bowfins. I can honestly say I have never seen a more thorough job on any group such as this in my life. Every time I look at it, I think wow, all this on just gars? This would make any scientist proud to have one of these capping their life’s work and this doesn’t even begin to touch the work put out by Grande. I am in awe.

Marine Paleo Animal Fest, Day 3

saratogachalkMonday was a goniopholid crocodilian. Tuesday was mosasaurs, the largest of the marine predators. For day 3, we’re going to the other end of the scale.

What is a picture of a rock outcrop doing here? This is a picture of the Saratoga Chalk, courtesy of the Arkansas Geological Survey. Look at it this way, and it is tons of chalk, the same that they used to make for blackboards when they used the real thing.

But look at it under a microscope and you open up an entirely new world. For chalk is not just a rock. It is a rock made of trillions of shells of microscopic organisms that live in the oceans.

Two kinds of microorganisms make up most of the chalk. The Saratoga is primarily noted for its abundance of foraminifera, (forams for short) one-celled organisms that form shells, or tests, out of minerals dissolved in the sea water. The ones that make up chalk and limestone form theirs out of calcium carbonate. It is unclear what they are related to, but one thing is clear. They have developed a huge diversity in their over 500 million years of existence.

Amphistegina-Hallock_92_1-full_1

Pacific forams. Smithsonian,  Pamela Haddock, University of South Florida

I find forams fascinating because of their wonderful diversity. Here is another picture posted on the blog “Letters from Gondwana.” The article is a nice description of forams if you want more information on them.

750px-foraminifc3a8res_de_ngapali

The other group that is commonly found in chalk is called the coccolithophores. These are very tiny, once-celled plants found in the ocean and make up one of the largest groups of phytoplankton. They also make shells of calcium carbonate, but instead of a shell like the forams, they create their home with a few dozen intricately formed scales.

The coccolithophore Gephyrocapsa oceanica. Wikipedia.Gephyrocapsa_oceanica_color.jpg

When the cells die, the scales scatter and become tiny grains of calcium carbonate which, when piled up on the ocean floor with all the other debris from the oceans, can form those particles of chalk that you used to clean off the blackboard.

Both of these groups prefer shallow, warm seas. Go to the Bahamas or the Persian Gulf and you will get an idea of the environments that are admirably suited to making modern day chalk, as well as getting a good idea of what Arkansas was like 100 million years ago.

 

 

Day 2 of marine paleo-animals: Mosasaurs

Continuing our celebration of marine animals of the Cretaceous found in Arkansas, here is a picture of a mosasaur. It is from the Dallas (Perot) Museum of Nature and Science. They have a great display of several different mosasaurs. You can also see one on display at the natural history museum located at the University of Texas at Austin.

 

Heath mosasaur, Dallas Museum of Nature and Science

Heath mosasaur, Dallas Museum of Nature and Science

Mosasaurs were the apex predators of their time, which was in the Late Cretaceous. Tyrannosaurs may have ruled the land, but mosasaurs ruled the seas. The first mosasaurs appeared in the early Cretaceous, but by the end, they dominated the oceans. Unfortunately for them, they only had a 20 million year or so run at the top before the mass extinction at the end of the Mesozoic Era wiped them out along with the dinosaurs.

Mosasaur in UT-Austin museum

Mosasaur in UT-Austin museum

Mosasaurs were not related to dinosaurs, other than also being reptiles. They were most closely related to the group of lizards that include the monitor lizards, such as the Nile monitor and Komodo Dragon. They were fast predators with a powerful tail to move them through the water. Mosasaurs were so adapted to the water that they bore live young and were not able to walk on land, although they did still have to surface for air like every other reptile. Recent research has found they were endothermic (warm-blooded), unlike their competitors, giving them an edge by allowing them to sustain higher activity levels. It also meant they had to eat more often, making it necessary for them to be effective hunters. Research has also indicated they were countershaded, with a lighter belly than the back, much like many sharks of today. They had a varied diet, with some species specializing in different prey, so over the whole group, they pretty much ate everything in the ocean.

Mosasaur bones have been found in many places throughout southwest Arkansas, which was covered by the Western Interior Sea during the Cretaceous. Two species have thus far been recognized. Platecarpus was fairly small, only 4-5 meters (13-16 feet), but were noted for some exceptionally preserved fossils that retained the impressions of a tail fluke, allowing paleontologists for the first time to see what their tails looked like. The other species is Mosasaurus itself, a huge predator that reached lengths of 15-18 meters (50-60 feet).

mosasaurus-size

 

Sharks! Welcome Back to School

Welcome back to the new school year. Some of you will be excited to be back, seeing old friends, making new ones, and learning new things. Some of you will be sad to see summer end. Many of you will be doing both at once. Others of you of course aren’t in school and don’t care about it, but if you are here, you are nevertheless interested in learning cool new stuff. So it is a time for a celebration of the natural world.

Shark Week is a big summer event on the Discover Channel. It is probably their biggest viewer draw all year. Who doesn’t like learning about sharks and seeing them in all their awe-inspiring glory? Additionally, if one is keeping up with the weather, southern Louisiana is currently being deluged, with Baton Rouge and surrounding areas practically getting washed away.

So I thought this would be a good time for Paleoaerie to hold its own version of Shark Week. I can’t do a series of tv specials, so I am going to extend my Paleo Shark week over two full weeks. All this week I will be putting up short posts on marine creatures that swam in the oceans of southern Arkansas during the Cretaceous. Every day will be a new post on something that would make your swim…interesting. Next week will truly be Paleo Shark Week. Every day next week will be highlighting a different shark that would be swimming in the Cretaceous waters of southern Arkansas.

To kick things off, I will start with this creature.

goniopholisAR

This is a crocodylomorph, meaning that it is in the same group that includes crocodiles and alligators. Specifically, it is a member of the family Goniopholididae. Species in this group were, at least superficially, similar to modern crocodilians. They were semi-aquatic hunters living in marsh and swamp lands. They wouldn’t look out of place with the modern alligators swimming around Arkansas today, except that they probably couldn’t compete effectively with alligators, who are better adapted for the lifestyle than they were. They lived throughout much of the Mesozoic, from the early Jurassic to the Late Cretaceous, when the more modern forms replaced them.

Goniopholids are what is known as mesosuchians, which means “middle crocodiles”. Mesosuchians, as the name suggests, were more derived than the earliest crocodyliforms, such as the protosuchians, although less derived than modern-day crocodilians. Mesosuchians is not a formal name, but an informal and decidedly paraphyletic (i.e. not a valid cladistic grouping because it leaves out some descendants) name to designate those crocodyliform species showing the early characteristics and those that show the characteristics of the modern crocodilians. Here is a phylogenetic tree put out by Chris Brochu in 2001, showing the general relationships within the crocodylomorphs. The names on the left side of the long main line include everything from that point on, e.g. Crocodymorpha includes “sphenosuchians” and everything below it, but not the Aetosauria and above. Mesosuchians plus Eusuchia (which does include all modern groups) can correctly be called Mesoeucrocodylia, but that hardly helps us specify the group.

crocbrochu2

Simosuchus_clarki,_ROM.jpg

Simosuchus, Royal Ontario Museum.  Photo by Gordon E. Robertson.

 

Mesosuchians include a wide variety of animals with a large number of species. They include terrestrial  animals like the carnivorous boar croc Kaprosuchus and the herbivorous Simosuchus, as well as the more typical semi-aquatic pholidosaurs, which include the super croc Sarcosuchus, one of the largest crocodylomorphs ever, reaching almost 40 feet.

Sarcosuchus may not have been quite as big as Deinosuchus though. Deinosuchus was an alligatoroid (within the larger alligator family, but not a modern alligator), which potentially reached upwards of 40 feet, but may have been heavier set. Sarcosuchus lived in the early Cretaceous at the same time as Goniopholis in Arkansas, but lived in Africa and South America. Deinosuchus, on the other hand, lived int he Late Cretaceous right here in Arkansas. While we have no bones to prove this, we do know they lived in Texas and Mississippi, as well as many other places in the United States. The environment would have been suitable for them, so there is no reason to think they did not live here as well.

2002-01-16 15.40.23

Sarcosuchus life size model “attacking” my family.

 

The Long Delayed Fossil Segment

A reader by the name of Allie Valtakis successfully identified the fossil last week as worm burrows and another reader further identified them as Serpulid tubeworms. Great job!

Here is the picture again for those who did not see it. The picture comes from Donald Hattin’s “Stratigraphy of the Carlile Shale (Upper Cretaceous) in Kansas: Kansas Geological Survey, Bulletin 156, 1962. Plate 13.

ksserp

It is listed as Serpula semicoalita Whiteaves, encrusted upon fragment of Inoceramus cuvieri, middle part of Fairport (Loc. 37), x1/2, hypotypes, KU1202062J1.

In 1984, Norman Sohl and Carl Koch reported finding an unidentified Serpula species in Hempstead County, near Hope, in the Arkadelphia Marl, a Cretaceous limey mud well known for its shallow marine fossils. Numerous Exogyra oysters and Gryphaea have been pulled from the mud there, along with a variety of other fossils. On this particular occasion, they found, lithophagid borings, pycnodontes, Exogyra costata, Gryphaeostrea, Crassatella, Anchura, Discoscaphites, Clione, and last, but not least, Serpula. Sadly, they provided only a faunal list and not a single picture in the entire report. They provide a map on page three of the localities, but that is it. How one writes a report 282 pages long, consisting of one illustration, two tables, and 270 pages of lists of fossils without a single illustration of anything collected is truly a mystery to me. At any rate, here is the citation, the actual report is at the link provided above.

Sohl, N. F., and Koch, C. F., 1984, Upper Cretaceous (Maestrichtian) larger invertebrate fossils from the Haustator bilira Assemblage Zone in the West Gulf Coastal Plain: Open-File Report.

Rudman, W.B., 2004 (July 27) Polychaete Worms (Bristle worms). [In] Sea Slug Forum. Australian Museum, Sydney. www.seaslugforum.net/find/polychaete

Rudman, W.B., 2004 (July 27) Polychaete Worms (Bristle worms). [In] Sea Slug Forum. Australian Museum, Sydney. http://www.seaslugforum.net/find/polychaete

So what are serpulids anyway? They are annelids, meaning they are segmented worms, just like earthworms. But unlike earthworms, these are polychaetes, or bristle worms, so a lot of them look like pipe cleaners. Serpulids in particular are marine and sessile, meaning they like to stay in one place and attack themselves to a surface.

They are rather unusual for worms in that they are important biomineralizers. They make long calcium carbonate tubes in which they can pull themselves into when threatened. Unlike other tubeworms, serpulids even have a lid, called an operculum, they can close the tube with. While they are common in shallow marine settings, the pictures most people have seen of them have come from nature documentaries showing the ones that live near hydrothermal vents because they have an unusually wide range of thermal and pressure tolerances, with species living throughout the oceans.

A colony of tube worms, some as long as 1.5 m, clustered around an ocean floor hot spring. (Photograph by Daniel Fornari, Woods Hole Oceanographic Institution.)

A colony of tube worms, some as long as 1.5 m, clustered around an ocean floor hot spring. (Photograph by Daniel Fornari, Woods Hole Oceanographic Institution.)

Serpulids don’t get nearly as big, with the largest modern ones rarely getting more than about 150 mm in length and 5 mm wide, although they cause more problems, seeing as they live in shallower water and like to attach themselves to boats. They will also attach themselves to clams, coral, rocks, and pretty much any other surface they can find.

By Nhobgood Nick Hobgood - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6300216

By Nhobgood Nick Hobgood – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6300216

The fossil record of serpulids goes back to the middle Triassic, but the only record of them in Arkansas is the one from the Cretaceous. There are reports of possible annelid tracks in the Ordovician rocks of the Ouachitas, but that would be too early for serpulids and without any fossils to back them up, the tracks could well be anything. Polychaetes make for terrible fossil makers, as they are mostly soft tissue and fall apart into mostly unrecognizable chitin pieces quickly after death, making serpulids unusual for the group. The tubes they make give them a far better chance at making it through the fossilization process, so they show up disproportionately in the fossil record compared to their kin.

Tubeworms like this are filter feeders, but some other polychaetes are carnivores, which is all that Hollywood has needed to turn deep sea tubeworms into this. Gotta love B-grade monster movies.

deeprisingwhatchodoin2

 

It seems that I will not be able to consistently get the explanatory posts out as timely as I would like for the mystery fossils. So what I think I am going to do in the future is to continue to put them on Facebook as mystery fossils, but I will skip the initial post here. So if you want to follow the attempts to recognize the fossils before I post them on the blog, follow the Facebook feed and get a jump on the blog posts. Speaking of the Facebook page, I have found the the later Google Chrome updates have somehow broken the Facebook link on the website, so the Facebook posts are no longer showing up on the page as they are supposed to. They work correctly on Internet Explorer, so I do not know why they aren’t working on Google Chrome. I am not a computer programmer, but I will see what I can do about that, although that may just have to wait until the revamp of the site, which I am planning. In the meantime, I appreciate your patience and thanks for reading.

 

Fossil Monday, A New Segment

Here is a new fossil for you to identify. I haven’t put up anything like it before, so you can rule out any of the usual candidates. I will put up the answer next Monday unless some early bird beats me to it. Good luck.

ksserp

Fossil Friday: Stuck on the Rocky Shores

So were you able to identify our fossil this week?

arfossil2

This if Figure 5 from the only real publication on Arkansas fossil barnacles. I posted an articles on barnacles once before, but time grew short and I neglected to mention specifically the Arkansas ones, an egregious error on a website devoted to Arkansas fossils. So I am now correcting that with this post.

As I mentioned in the last post, barnacles are crustaceans and have been around since the Cambrian Period. They can be found throughout much of the Northwest half of the state, basically anywhere not carved out by the Mississippi river. However, other than some miscellaneous purported barnacles borings on clam shells and the like in the Ozarks and Ouachitas, there is not really any published literature on the subject.

For published information, if you really want to know about barnacles, you need to talk to Victor Zullo at the University of North Carolina, Ernest E. Russell of Mississippi State University, or Frederic Mellon. Sadly, you will find that difficult as they are all now deceased, leaving the field of Arkansas cirriped studies completely wide open to the prospective student.

In 1987, the trio published a paper detailing two new species of barnacles found in a quarry in Hot Springs County, Arkansas. The first barnacle was identified as being in the suborder Brachylepadomorpha and was named Brachylepas americana. They listed this as important as being “quite possibly the richest single accumulation of brachylepadomorph material ever encountered.” They also suggest that because of its similarity to other species in Europe that there was “unrestricted communication between these widely separated geographic regions during late Campanian time.”

zulloarbarnacle

Another thing I found interesting about these barnacles is where they were found. Thousands of these fossils were found in a gravel within the Brownstone Formation, dated to the Late Cretaceous, and deposited in a littoral environment. This is a high energy, near shore environment. The living representatives of this group, though, are only found near hydrothermal vents.

The other barnacle they discuss and the one which is shown in Figure 5 above is Virgiscalpellium gabbi and a subspecies V. gabbi apertus. These are only known from nine specimens however, unlike the thousands of B. americana. This seems to be a much less common species throughout its range than other barnacles.

Along with the barnacles, the trio mention the Brownstone Formation is rich in fossils of other types, including, the oyster Exogyra ponderosa, several gastropods, a sponge, brachiopod, serpelid worm, bryozoans, nannoplankton, and the odd vertebrate, such as mosasaurs, sharks, and skates.

Zullo, Victor A., Russell, Ernest E., and Mellen, Frederic F. 1987. Brachylepas Woodward and Virgiscalpellium Withers (Cirripedia) from the Upper Cretaceous of Arkansas. Journal of Paleontology. Vol. 61(1):101-111.

Mystery Monday, a Sticky Wicket

It has been a long time since I have posted a new mystery fossil. I will kill two birds with one stone today by revisiting a type of fossil that I have shown before, but for which I neglected to provide some specific Arkansas detail. See if you can figure out what this is and tune back in Friday to find out what I didn’t say last time.

arfossil2

 

Holiday Fun in Arkadelphia

Wow. I can not believe that I have not posted anything here since Halloween. My New Year’s Resolution is to not let that happen again. I have no excuses. But as was said on the Syfy show The Expanse, “We can not change the things we’ve done, but we can all change the things we do next.”

For this post, I want to relate the trip I took to Arkadelphia just before the Christmas holidays to visit the Goza Middle School on the invitation of one of their science teachers, Trent Smith. That trip will benefit many people in the future, and it also provided a chance to see some Arkansas geology and paleontology that may prove interesting to fossil enthusiasts.

The fossils that started this off. Picture by Trent Smith

The fossils that started this off. Picture by Trent Smith

This all started with an email I got from Trent Smith, who had found some fossils he wanted help identifying. After looking at the attached photo, I tentatively identified most of them as specimens of Exogyra ponderosa, a common oyster from the Cretaceous Period. There also appeared to be a goniatite ammonoid, a Cretaceous Period cephalopod, or squid relative. I could not be sure just from looking at the pictures, so I offered coming down to take a look at them in person. Trent was amenable to that and after a few emails back and forth, we arranged to not only look at his fossils, but talk to his eighth grade science class while I was there. It turned out that the school was interested in me talking to multiple classes, which all told was about 160 students. They suggested I could either give one talk to all of them at once, or I could do multiple talks to individual classes. I much prefer the smaller groups where people can get a more hands on experience with the fossils and have more opportunity for students to ask questions, so I opted to give several talks. I wound up giving seven talks, with two of the talks to combined classes. So I had the opportunity to speak with a lot of students.

When I got there, Trent helped me bring in my boxes and took me to his room to start setting up. Goza Middle School students are fortunate to have great science teachers who are passionate about science and education. Trent’s classroom fossil collection was by far the largest fossil collection I have ever seen in a public school classroom. They have a good variety of most of the invertebrate fossils that can be found in Arkansas. They also had a fabulous nautiloid ammonoid 4″ across or more. I had a shell of a modern Nautilus, a genus of the only extant ammonoids, so the students were able to compare a modern version with one over 70 million years old.

For each class, I gave a short introduction to the fossils that can be found in the state, which is much more diverse than most people realize. I also gave them a quick demonstration of the immense expanse of time we were discussing. I have a timeline that stretches eighteen feet and covers 600 million years. People are usually suitably impressed with that timeline, but when I tell them how much space our civilization represents on the timeline, they are stunned. At that scale, all of human recorded civilization is approximately the width of one human hair. Afterwards, we let the students look at the fossils I brought and ask questions. The students were more reluctant to get out of their seats and approach the front table than the younger kids I usually talk to, which I found interesting and speaks to how quickly we train our students to sit and listen without interaction. But once they got over their training, they enjoyed being able to handle the fossils and examine them close up. The students were uniformly polite and well behaved and were a pleasure to talk with. Midway through, the teachers treated me to a tasty potluck lunch.

My new favorite shirt

My new favorite shirt

If everything was left at that, it would have been a great trip and I would be happy to return, but they really went above and beyond. In addition to lunch and a small donation (I have generally not asked for payment for classroom visits in the past and as a result, getting paid for it almost never happens, but getting paid means I can go to more classes so is greatly appreciated), they provided me with even more. They gave me my first two Paleoaerie shirts, which they designed and they did a fantastic job. On the front of both shirts is a dinosaur foot that looks like the foot of Arkansaurus, the only dinosaur bones ever found in the state, and my name, Dr. Daniel. On the back of one shirt, it has the dinosaur foot with the words PALEONTOLOGY above it and DIGGING UP KNOWLEDGE below it. On the back of the second shirt, it says PALEOAERIE.ORG followed by my three statements of what guides my efforts: The universe is endlessly amazing, knowledge is useful only when it is shared, and you can’t really know something unless you understand how and why we think we know it. The shirts are going to be my uniform for future talks.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

After school was over, Trent showed me a spot he has collected fossils from on Wp Malone Road, just west of I-30. According to the Arkansas Geological Survey’s geologic map of the Arkadelphia quadrangle, the area is listed as being in the Nacatah Sand, an Upper Cretaceous formation consisting of a mix of unconsolidated sediments deposited in a nearshore marine environment. However, the marl, a limey clay, we found in the creek looked more like it came from the Marlbrook Marl, a formation that lies underneath the Nacatah and separated from it by the Saratoga Chalk formation. The Saratoga Chalk is not thick in this area, so it is quite easy to go from the Nacatah to the Marlbrook in a very short distance. In this particular locale, the Marlbrook is close by and it is likely that what we found was washed downstream to where we found it. As I recall, Trent mentioned that fossils were more common the farther upstream one went, which would support this idea. The Marlbrook Marl, when fresh, is a blue-gray lime clay, or marl, laid down in nearshore, shallow marine environments, just like the Nacatah Sand, but without the sand contribution. The upper part of the Marlbrook is also famous for being extremely fossiliferous and this site was no exception. I initially attempted to collect what I found, but very quickly realized there were so many shells that it was impossible to carry them all. The great majority of what we found were shells of Exogyra ponderosa, but the numbers would have allowed us to quickly fill a crate with specimens. We also found a few snail shells (of what type I am not sure) and a terebratulid brachiopod, but the numbers of everything else did not begin to compare with the shells of Exogyra. On other trips, Trent collected numerous Exogyra shells and gave me two boxes full of shells. Thanks to him, I will be able to supply many Arkansas classrooms with actual Arkansas Cretaceous fossils.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site. Click to enlarge.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

This area is a nice place to collect. As long as one is on public land (or with the permission of the land owner), you can collect any of the invertebrates you want, so you can feel free to collect Exogyra shells here. But the Marlbrook also contains more than just oysters, brachiopods, and snails. It has also yielded mosasaurs and even the occasional elasmosaur. There is even the possibility that a dinosaur was washed out to sea and could be found there. So if you collect in this area and find some bones, give me a call.

Many thanks to Trent Smith and the whole of Goza Middle School, not just for your hospitality, but for living the statement of Dr. Scott the Paleontologist on Dinosaur Train: “Get outside, get into nature, and make your own discoveries.”