paleoaerie

Home » Posts tagged 'mammoth'

Tag Archives: mammoth

National Fossil Day Post #1: The Most Famous Fossils of Arkansas

 

NFD_2015_Oval

NFD_2015_Oval

This week is Earth Science Week, with National Fossil Day on Wednesday. The Museum of Discovery is holding its second annual National Fossil Day event on Saturday, the 17th, between 10 am and 3 pm. So in honor of the week and in preparation for the museum event on Saturday, I thought I would briefly talk about what I consider the three most famous fossils found in Arkansas. You may notice this list is exclusively vertebrates. That is because of the rather large bias in popularity vertebrates have over invertebrates. Vertebrates are much less common in Arkansas than invertebrates, but they get almost all the press. Let me know in the comments section if you have any other contenders.

arkansauruspicThe first contender for Arkansas’s most famous fossil is Arkansaurus, the only dinosaur to have been found in the state. Found in 1972 in Sevier County, the only bones found comprised the front half of one foot. Despite considerable searching, nothing else has ever been found. The lack of diagnostic bones has made it impossible to determine exactly what kind of dinosaur it was. All that can really be said is that it is some kind of coelurosaur, a type of theropod, but not a tyrannosaurid, ornithomimid, or any other more derived form related to birds. We can also say it was a medium-sized dinosaur, meaning it wasn’t terribly small, as the front half of the foot measures just over two feet long. A statue was made by Vance Pleasant, which was recently seen at the Museum of Discovery as part of a dinosaur exhibit. How accurate is it? It’s a reasonable estimate based on what we know right now, which is not much, except that the real animal probably had some form of feathers not seen on the statue. The fossils are currently housed at the University of Arkansas at Fayetteville.

ticker_fishskull_freeMy vote for the Arkansas fossil that is more widely known outside the state better than inside it is Ozarcus, a primitive shark found by the paleontologists Royal and Gene Mapes in the Ozark Mountains near Leslie. The reason for the fame of this fossil is that it is the oldest known shark fossil that preserves the gill supports, known as the branchial basket. These normally do not preserve because they are made of cartilage, much like most of the rest of the shark skeleton. The gill supports here indicated that both sharks and osteichthyans, or bony fish, evolved from an ancestor that looked more like bony fish than it did the cartilaginous sharks, meaning that the original sharks were not primitive to bony fish, but possibly evolved after the appearance of bony fish. Due to this, Ozarcus got international coverage and became well known to paleontologists. The fossil currently resides at the American Museum of Natural History in New York.

http://blog.arkansas.com/post/a-pre-historic-visitor-comes-to-the-lower-white-river-museum-state-park-in-des-arc/

blog.arkansas.com/post/a-pre-historic-visitor-comes-to-the-lower-white-river-museum-state-park-in-des-arc/

The last contender for Arkansas’s most famous fossil is the Hazen Mammoth, the only mammoth known from the state. Found in 1965, it consisted of the skull, tusks, and some vertebra. There was a lot more of the skeleton found, but unfortunately, the bones were very soft and were severely damaged or destroyed before they could be collected. The bones were identified as Mammuthus columbi, or the Columbian Mammoth, a less hairy version of the more commonly known woolly mammoth, indicating warmer temperatures than found in areas in which the woolly mammoth is known. Even though only one mammoth has been found in Arkansas, upwards of two dozen mastodons have been found. Mastodons were smaller cousins of the mammoths and preferred forest habitats over the grassy plains in which the mammoths lived. This provides evidence that much like today, the state was mostly forested during the Pleistocene Period in which they lived. Today, the mammoth is a resident of the University of Arkansas at Fayetteville.

So what would you call the most famous fossil of Arkansas?

Fossil Friday, a fossil of not quite mammoth proportions

BRF9FIG7It’s time to reveal the answer to Monday’s Mystery Fossil. We had three people who correctly identified this as the skull of Mammut americanum, the American Mastodon.

Mastodon bones have been found throughout Arkansas, although almost all have been found either in northeast Arkansas between Crowley’s Ridge and the Mississippi River or along the Red River in Southwest Arkansas. According to the Arkansas State University Museum in Jonesboro, Arkansas has more mastodon finds than any other state in the mid-south region, with at least 20 different skeletons.  Most of the work on them has been done by Dr. Frank Schambach and others of the Arkansas Archaeological Survey, headquartered at the University of Arkansas at Fayetteville, along with members of the Arkansas State University Museum. This particular mastodon was excavated by Dr. Schambach with the help of the Arkansas Archaeological Society along the Red River in Southwest Arkansas, I think in 1987, although I am not sure of the date yet.armap

Mastodons were related to elephants, although not as closely related to modern elephants as mammoths. Mammoths have also been found in Arkansas, most notably the Hazen mammoth, found in 1965. That specimen was a Columbian mammoth (Mammuthus columbi), a less hairy version of the wooly mammoth (Mammuthus primigenius). They lived across much of North and Central America during the Miocene and Pliocene, although they are known mostly from the Pleistocene in Arkansas, the heyday of the Ice Age, which is when people traditionally think of them living. They were similar in size to modern elephants.

Mastodon, Arkansas State University Museum

Mastodon, Arkansas State University Museum

The teeth of mastodons, mammoths and modern elephants tell an interesting story. Modern elephants have a wide diet of vegetation from grass to fruit and tree limbs. The Asian elephant has teeth that are more plate-like in form, making a series of ridges that create an excellent grinding surface. African elephants spend more time in forests and bush lands, with a corresponding higher amount of bushy vegetation in their diet. Their teeth are large, multi-rooted teeth with a series of ridge-like cusps. Mammoths take the plate-like grinding surface to an extreme as an adaptation to the grasslands they frequented. Mastodons, on the other hand, specialized in the opposite direction, with large, prominent cusps suited to a more forested environment and diet. Thus, mastodons and mammoths formed a bracket surrounding elephant ecology.

Asian Elephant (Elephas), AFrican Elephant (Loxodonta), Mastodon (Mammut). Wikimedia

Asian Elephant (Elephas), AFrican Elephant (Loxodonta), Mastodon (Mammut). Wikimedia

Mastodon (left), Mammoth (right). http://www.igsb.uiowa.edu/

Mastodon (left), Mammoth (right). http://www.igsb.uiowa.edu/

Work that has recently come out has shed new light on why they went extinct. People have long argued over whether climate change or humans wiped out the megaherbivores at the end of the last ice age. The Overkill hypothesis postulated that early humans hunted them to extinction. There is also the alternative that other actions by early humans contributed to their extinction. However, while there has been plenty of evidence indicating humans did hunt mammoths (e.g. the Clovis people at the Dent site in Colorado), the hypothesis has come under fire for the lack of widespread hunting evidence and timing issues, with research indicating the megaherbivores were already going extinct before humans appeared on the scene. The other hypothesis, climate change, has gotten more support from a study of plant fossils. According to the new data, the early tundra environments were dominated, not by grass, but by forbs, weedy herbaceous plants with more nutrients than grasses. An earlier glaciation 20-25,000 years ago dramatically reduced the abundance of these plants. When the weather warmed up, the forbs increased again, but never approached their previous levels. When the next glaciation hit, the forbs mostly died out, allowing the less nutritious grasses to take over, which greatly reduced the amount of herbivores the land could support. Of course, this does not mean that humans had nothing to do with the extinctions, but it does mean they were likely not the primary cause, more likely simply throwing the last spear into the coffin of the great herbivores.

That’s it for this week. Check back Monday for a new mystery fossil. Have a good weekend.