Home » Posts tagged 'Paleontology'

Tag Archives: Paleontology

Prehistoric Shark Week, Day 5: From Whence the Great White?

Greetings and welcome to the final day of Prehistoric Shark Week! All week we have covered sharks that swam in Arkansas during the Cretaceous Period. The dinosaurs get all the press, but we had a diverse marine ecology during that time. Last week, we met a few of the non-shark denizens, such as mosasaurs, elasmosaurs, and more. This week, we have seen nurse sharks, goblins, sand tigers, and an array of rays, skates, and angel sharks. We wrap up the festival of marine animals with the question that everyone wants to know. Where did the most famous sharks of all time, the Great White and Megalodon, come from and how does Arkansas play into this?


A collection of galeomorph sharks that made their home in Cretaceous Arkansas and much of the world’s oceans, appropriately scaled.

The Great White, or simply White Shark, is named Carcharodon carcharias, meaning sharp tooth pointer, although more popularly named for its white belly, is well known as the largest living predatory fish in the sea, reaching up to and, probably over, 20 feet. Megalodon, listed either as Carcharocles megalodon or Carcharodon megalodon, depending on whether or not one believes it is directly related to or convergent with White Sharks, is the largest known predatory fish ever, reaching sizes up to three times that of the White Shark. It appeared in the fossil record about 16 Mya, but went extinct 1.6 Mya (contrary to what a fictitious documentary on the Discovery Channel claimed).

During the Cretaceous, the southwestern part of the state was covered by the Western Interior Seaway, which for us, was essentially equated to having the Gulf coast not just on our doorstep, but flooding it. Those waters were warm, rich in nutrients, and a hotbed of marine life. In those waters, a few sharks of interest made their home.

All of the sharks we will be talking about are lamniform sharks. These sharks are known for being at least partially endothermic, meaning they used their core muscles to create their own heat and maintain an elevated body temperature, giving them the ability to be active hunters even in cooler waters. Of course, it also meant they were hungrier, needing more food, keeping them always on the prowl. This is what allows the White to be such a fearsome hunter today, giving it the power and energy to breach completely out of the water during attacks.

Squalicorax is an extinct shark of the time that is commonly thought to have resembled Whites. These sharks got up to five meters, although they were typically around two meters. Squalicorax is also called the Crow Shark, which some people have speculated it got that name from evidence of its scavenging. However, squalus means shark (and is the scientific genus name for dogfish) and corax means crow, so the name Squalicorax literally means crow shark. Squalicorax_pristodontus_Agassiz,_1843_1Now as to why it was named that way to begin with, no one knows because when Agassiz named it in 1843, he didn’t leave a record as to why. They hunted and scavenged a wide range of animals, everything from turtles to mosasaurs. Unfortunately, the relationships between Squalicorax and other lamnids is uncertain, so whether or not it could have been ancestral to anything, much less Whites or megalodons, is unknown at present.

Another candidate is a shark named Isurus hastalis, an Oligocene shark that lived 30 Mya. Isurus also includes the modern day mako shark. However, a researcher by the name of Mikael Siverson concluded that the Isurus teeth were not makos, but worn down teeth similar to modern Whites. So he changed the name to Cosmopolitodus. It has also been suggested that these sharks originated from a shark called Isurolamna, which lived in the paleocene 65-55 Mya.


Possible evolutionary sequence of the Great White.

A more recent view, and one which I back (with freely admitted bias because it allows me to say they evolved from Arkansas sharks:) ), is that both Whites and megolodons evolved from an extinct lamnid called Cretolamna, the Cretaceous lamna. This shark had large, strong teeth and was very successful. It had a worldwide distribution and lived from the Cretaceous to the Paleocene. Cretolamna fossils have not been reported in Arkansas thus far, but they were a member of the family Cretoxyrhinidae, of which the shark Serratolamna was a member. The teeth of Cretolamna and Serratolamna are extremely similar, as one might expect from genera in the same family. However, Serratolamna teeth have serrations and Cretolamna does not, making Serratolamna teeth closer in shape to the White Shark. Serratolamna did not have the same worldwide distribution and did not last as long as long as Cretolamna, though. It is impossible to tell which one was directly ancestral to the later sharks, but Cretolamna, due to its more cosmopolitan range, has gotten the nod. It was named first and is much better known than Serratolamna, giving it an edge when people find and identify fossil shark teeth. Thus, it is not a big stretch to say that Serratolamna, or a very close relative, eventually evolved into Carcharodon carcharias as well as Carcharocles (or Carcharodon) megalodon.


Serratolamna gafsana. Wikipedia. Photo by Hectonichus.

I hoped you have enjoyed Prehistoric Shark Week and the previous week of Cretaceous Arkansas marine predators. Let me know if there is another group that you think deserves special consideration for a celebratory week.

Day 4 of Prehistoric Shark Week: Sand Tigers

For Day 4 of Prehistoric Shark Week, I would like to mention another modern day shark that has been around since the Cretaceous: the sand tiger sharks. Tomorrow, I will discuss a couple of Cretaceous sharks that may be the ancestors of the two most famous sharks in the world – the Great White and the giant Megalodon.


Carcharias taurus. Wikipedia. Amada44.

carchariasThe Sand tiger is a common shark in the Cretaceous sediments, or at least, their teeth are, which means they were probably pretty common back then.  The teeth tend to be long and thin, with two small cusps on either side of the large, center blade. reports that the center blade is smooth-edged with a strongly bilobed root, large bulge in the center of the root (aka lingual protruberance), and nutrient foramen in the center.

There are actually two sharks that are often called sand tigers in the Cretaceous rocks. One is Carcharias holmdelensis, the Cretaceous version of Carcharias taurus, the modern day sand tiger shark. Also going by the name grey nurse shark, amid several others, sand tigers are large-bodied sharks that will eat pretty much anything, but since it is a fairly slow and placid shark most of the time, it doesn’t seem to go after anything that requires a lot of effort. They are known for gulping air to allow themselves to float in the water column without expending much effort. So although they look scary, they appear to be too lazy to live up to appearances.


Odontaspis ferox

The other shark that gets called a sand tiger, is Odontaspis aculeatus, one of the ragged toothed sharks, which also go by the name sand tiger. These sharks were until recently in the same family as Carcharias, but have since been pulled out into their own family. They are very similar, as one might has guessed from the numerous times these sharks have been grouped and split over the years. As put it, “Chaos reigned until Leonard Compagno examined museum specimens from all over the world, corrected misidentifications and sorted out synonyms.”


Prehistoric Shark Week, Day 3: Flat Fish

For Day 3 (a little late, yes) of Prehistoric Shark Week, I want to bring to your attention the diversity of chondrichthyans that have opted for a flatter bauplan.



Ray tooth

Sharks are generally split into two groups, the galeomorphs, which are mostly the more typical torpedo-shaped sharks, including the sharks that most people think of when they envision a shark. The other group is the squalimorphs. These sharks lack an anal fin and many of them have developed a penchant for flatter bodies and broad pectoral fins, and in some cases pelvic fins as well (although not all, such as the dogfish and frilled sharks). Up until recently, the batoids, otherwise known as skates and rays, were considered part of this group, the consensus being that they were a more specialized type of squalimorph shark that had taken flat to an extreme. But the most recent molecular studies have indicated that they are a group unto themselves. The batoids have a long fossil history, with a number of ray teeth found in the Cretaceous deposits of Arkansas, particularly the eagle ray family Myliobatidae. Their teeth are typically flat rectangles on top with a comb-like surface below. Another type of ray that can be found are the guitarfish, or Rhinobatos casieri. These pectoral fins of these fish extend to their head, giving them a triangular shaped front end of a more traditional shark-like back end.


Shark classification.


Skates and rays are generally very docile and would not be very threatening, spending their time scrounging about on the sea floor for benthic (living in or on the sea floor) invertebrates and the occasional fish. The same can’t be said for the last member of this group, the sawfish. Armed with a rostrum (its elongated snout) with teeth out to the side, the fish looks like it has a chain saw for a nose. The sawfish will swim into a school of fish and thrash its rostrum rapidly back and forth, spearing and stunning several fish, which it can then gobble up. They can also use it to dig up clams and crabs from the sediment. While they won’t attack humans, any human who provoked one may easily wind up perforated by the rostrum, probably not deadly but certainly painful. Most modern sawfish reach a respectable two meters, but the largest species, the green sawfish (Pristis zijsron) can top seven meters (24 feet). This is as large as the Cretaceous versions. Modern sawfish are typically put into the family Pristiformes. The Cretaceous ones are in their own family, called Sclerorhynchiformes and are not directly related, in that the Cretaceous ones are not thought to be ancestral to the modern ones. They are both put into the group Pristirajea, so they are thought to at least be related. But with the uncertainties in the relationships of the modern fish, the relationships with fossil forms are necessarily less certain. In any case, Arkansas sports several different species from this group, including Schizorhiza stromeri, Sclerorhynchus sp., Ischyrhiza mira, Ischyrhiza avonicola, and Ptychotrygon vermiculata. We were postively awash in sawfish.

Onchopristis numidus black JCS

Onchopristis. Cretaceous.

The true squalimorph sharks that have shown up in the Arkansas Cretaceous rocks are best represented by the Angel shark (Squatina hassei), which looks like an early rendition of a skate, so it is little wonder that most researchers viewed skates and rays as simply more specialized versions of these sharks. Nevertheless, it appears this is case of convergence, not homology (similarity due to relationship). If it is homologous, it isn’t directly so. It is possible both groups had a common slightly flattened ancestor and each took their own route from there.


Rhinobatos hakelensis. Cretaceous guitarfish.

All of these fish are pretty docile hunters, scrounging around the sea floor for benthic organisms, all those animals that make their home in or on the sea floor sediments. They spend their time digging around the sand for crabs, clams, and other invertebrates, the occasional fish. When threatened by the presence of a predator, they hide on the bottom, using their shape to help them blend in with the seafloor. Neither the ones today or the ones in the Cretaceous would have bothered a human swimming around them.

Becker, Martin A., Chamberlain, John A., Wolp, George E. 2006. Chondricthyans from the Arkadelphia Formation (Upper Cretaceous: Upper Maastrichtian) of Hot Spring County, Arkansas



Day 4 of Paleo-Animal Fest

Welcome to Day 4 of Paleo-Animal Fest, celebrating the creatures populating the Arkansas seas during the Cretaceous. Today we are going to look at a fish that has survived for an amazingly long time. They first appeared in the Late Cretaceous and have survived to the present day, still thriving. You can find them in many freshwater lakes and rivers, especially brackish and hypoxic (low oxygen) waters, even into marine waters on the occasion. They are a tough predator in many ways, from their durability in the fossil record to their physical defenses and their intimidating jaws. I am of course talking about gars.


This thing looks like a prehistoric crocodile.

Gars are piscivorous, meaning they eat other fish. The most common description of them is “voracious predator.” They are known for their tooth-filled jaws, scales of armor, and their fight. Their typical mode of attack is a lightning-quick sideways bite. Gar fishermen are often called “not right in the head.”

Gars can be found in many places within North America, but their fossils can be found all over the world. The vast majority of the fossils have been identified as Lepisosteus, which includes the longnose, shortnose, spotted, and Florida gar. However, most of their fossils are isolated scales, which makes it difficult to impossible to tell what type of gar it is from. So I am going to go with most people’s favorite gar, Atractosteus spatula, the alligator gar (pictured above). It is the biggest one reaching almost 3 meters. Another impressive armored, ancient fish that is still around is the sturgeon, which can get a lot bigger, but are nowhere near as impressive in the teeth department.


Ganoid scales

There are not a lot of skeletons of gars with heads and tails, but there are a lot of body pieces covered in scales. Gar scales are thick, rhomboid-shaped ganoid scales, meaning they are covered in what is effectively enamel. The scales form an excellent armor, making handling them hard on the hands. They are so tough and dense, in fact, that the scales have been used as arrowheads and make even CT scans on gars hard to impossible to get decent views. On the plus side, this results in them having excellent preservational potential and can be found quite commonly. The scales make the fossils really stand out and readily identifiable to at least the group Lepisosteiformes.


Lepisosteus simplex.

By far, the most complete and detailed description of gars ever published is by Lance Grande, the universally acknowledged leading world expert on fossil fish, called “An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei.” Special publication 6 of the American Society of Ichthyologists and Herpetologists, published in 2010. This is a massive tome, amassing almost 900 pages of detailed observation on gars. This book is a companion to a similar volume he did on bowfins. I can honestly say I have never seen a more thorough job on any group such as this in my life. Every time I look at it, I think wow, all this on just gars? This would make any scientist proud to have one of these capping their life’s work and this doesn’t even begin to touch the work put out by Grande. I am in awe.

Day 2 of marine paleo-animals: Mosasaurs

Continuing our celebration of marine animals of the Cretaceous found in Arkansas, here is a picture of a mosasaur. It is from the Dallas (Perot) Museum of Nature and Science. They have a great display of several different mosasaurs. You can also see one on display at the natural history museum located at the University of Texas at Austin.


Heath mosasaur, Dallas Museum of Nature and Science

Heath mosasaur, Dallas Museum of Nature and Science

Mosasaurs were the apex predators of their time, which was in the Late Cretaceous. Tyrannosaurs may have ruled the land, but mosasaurs ruled the seas. The first mosasaurs appeared in the early Cretaceous, but by the end, they dominated the oceans. Unfortunately for them, they only had a 20 million year or so run at the top before the mass extinction at the end of the Mesozoic Era wiped them out along with the dinosaurs.

Mosasaur in UT-Austin museum

Mosasaur in UT-Austin museum

Mosasaurs were not related to dinosaurs, other than also being reptiles. They were most closely related to the group of lizards that include the monitor lizards, such as the Nile monitor and Komodo Dragon. They were fast predators with a powerful tail to move them through the water. Mosasaurs were so adapted to the water that they bore live young and were not able to walk on land, although they did still have to surface for air like every other reptile. Recent research has found they were endothermic (warm-blooded), unlike their competitors, giving them an edge by allowing them to sustain higher activity levels. It also meant they had to eat more often, making it necessary for them to be effective hunters. Research has also indicated they were countershaded, with a lighter belly than the back, much like many sharks of today. They had a varied diet, with some species specializing in different prey, so over the whole group, they pretty much ate everything in the ocean.

Mosasaur bones have been found in many places throughout southwest Arkansas, which was covered by the Western Interior Sea during the Cretaceous. Two species have thus far been recognized. Platecarpus was fairly small, only 4-5 meters (13-16 feet), but were noted for some exceptionally preserved fossils that retained the impressions of a tail fluke, allowing paleontologists for the first time to see what their tails looked like. The other species is Mosasaurus itself, a huge predator that reached lengths of 15-18 meters (50-60 feet).



Real, Replica, or Fake

One question I get asked a lot when I show fossils to people is “Is it real or fake?” It is a question that always irks me because it seems very few people understand that this is an entirely wrong question.

People like to categorize things into binary bins. Is it black or white? Republican or Democrat? Is it raining or not? Do you accept science or religion? Of course, none of these questions make any sense as an either/or question. Just like real or fake, all of these questions miss the fact that there is more to it than one or the other. All of them can only be correctly answered if one is cognizant of the other variations. So today, I am going to introduce to you a more nuanced view of whether or not the fossils you see in museums are real or not.

Real fossils need little explanation. They are the actual fossil material. Whether or not it is actual bone or shell being preserved, a bone that has been replaced with minerals, a natural mold, or other some such style of preservation, they are real.


This is a real plesiosaur vertebra found in (or thereabouts) Sevier County, Arkansas.

Real in this case does not mean it is remains of the actual organism, although it can be. Bone, shell, leaves, and other tissues can be preserved indefinitely under the right conditions. Usually however, they are replaced with minerals or remain only as impressions in the sediment. In any case, these are all real fossils. They are the original fossil found, dug up, and brought back to the institution or person to whom it belongs.

Replicas  are casts or molds made from the actual fossil. They are made to look as close as possible to the original fossil. These are made so that the original can be protected while the copy is shown to many more people than could see the original. Use of replicas allows copies to be put in the hands of many people all over the world. In many instances, the original is too fragile or heavy to safely transport.


This is a cast of a real apatosaur bone. The original would be far too heavy and fragile to haul around to classrooms all the time.

The important point about replicas is that they are not fakes. They are duplicates of a real fossil. In some cases, they can be even better than the real thing. After decades of handling, the original fossils can get worn or broken, with details once present no longer visible.


Photo of the Berlin Archaeopteryx taken by Dr. Dave Hone. This fossil used to have, among other things, feathers on the legs, which were removed during too extensive preparation.

Fakes, on the other hand, represent something that is not only not real, but never existed. Many fakes are designed to deceive and so are often called forgeries. The difference between what many people think of as forgeries and what we are talking about here is that forgeries are usually designed to trick people into thinking they are the real thing. A replica, if presented as the real thing, would be considered a forgery. However, in paleontology, most things described as forgeries are in reality fakes designed to deceive people into thinking a fiction is real. Fakes are never acceptable in museums unless explicitly labeled to indicate that they are fantasies. The Piltdown Man is an example of a fake. It was made with the express purpose of making people think it was real, when in fact it was created from bits of human and animal bones that were altered to make them look like they belonged to the same primitive human.

Archaeoraptor was another fake. This one adds a wrinkle in the topic though. Archaeoraptor was made by gluing pieces of different fossils together. The individual pieces were real, but the resulting chimera was a fake.


Archaeoraptor. The picture on the right shows the various pieces. See the hyperlink for the full story.

As Archaeoraptor shows, fakes don’t have to be unreal to be fictional. There are lots of fakes that are real fossils put together in intentionally misleading ways. In the case of Archaeoraptor, they were simply trying to make the fossils more spectacular so they could sell them for a higher price. Others are done to discredit scientists or simply as pranks for fun.


Surgeon’s photo of “Nessie”

Of course, there are plenty of fakes that are made up out of whole cloth. Numerous “human” footprints found with dinosaur tracks are nothing more than carvings designed to trick gullible people. I have personally seen several in which the tool markings were clearly visible. The most famous picture of the Loch Ness Monster, known as the surgeon’s photo, was a fake.


A supposedly human footprint stepped on by a dinosaur track. Neither human nor dinosaur tracks look like this in reality. This is a clear fake being passed off as evidence of creationism by Carl Baugh.

So remember, when you are going to a museum or looking at fossils from a paleontologist, you may be looking at real fossils or replicas. But you will never be looking at fakes. They may not be the original fossils, but they are not trying to mislead you or lie to you, which is what fakes are trying to do. If you really want to see fakes, try here or here. And please, don’t insult your local paleontologist by saying they are showing you fakes when all they are doing is showing you replicas of real fossils that you might otherwise never be able to see.

Fossil Monday, A New Segment

Here is a new fossil for you to identify. I haven’t put up anything like it before, so you can rule out any of the usual candidates. I will put up the answer next Monday unless some early bird beats me to it. Good luck.


Fossil Friday: Stuck on the Rocky Shores

So were you able to identify our fossil this week?


This if Figure 5 from the only real publication on Arkansas fossil barnacles. I posted an articles on barnacles once before, but time grew short and I neglected to mention specifically the Arkansas ones, an egregious error on a website devoted to Arkansas fossils. So I am now correcting that with this post.

As I mentioned in the last post, barnacles are crustaceans and have been around since the Cambrian Period. They can be found throughout much of the Northwest half of the state, basically anywhere not carved out by the Mississippi river. However, other than some miscellaneous purported barnacles borings on clam shells and the like in the Ozarks and Ouachitas, there is not really any published literature on the subject.

For published information, if you really want to know about barnacles, you need to talk to Victor Zullo at the University of North Carolina, Ernest E. Russell of Mississippi State University, or Frederic Mellon. Sadly, you will find that difficult as they are all now deceased, leaving the field of Arkansas cirriped studies completely wide open to the prospective student.

In 1987, the trio published a paper detailing two new species of barnacles found in a quarry in Hot Springs County, Arkansas. The first barnacle was identified as being in the suborder Brachylepadomorpha and was named Brachylepas americana. They listed this as important as being “quite possibly the richest single accumulation of brachylepadomorph material ever encountered.” They also suggest that because of its similarity to other species in Europe that there was “unrestricted communication between these widely separated geographic regions during late Campanian time.”


Another thing I found interesting about these barnacles is where they were found. Thousands of these fossils were found in a gravel within the Brownstone Formation, dated to the Late Cretaceous, and deposited in a littoral environment. This is a high energy, near shore environment. The living representatives of this group, though, are only found near hydrothermal vents.

The other barnacle they discuss and the one which is shown in Figure 5 above is Virgiscalpellium gabbi and a subspecies V. gabbi apertus. These are only known from nine specimens however, unlike the thousands of B. americana. This seems to be a much less common species throughout its range than other barnacles.

Along with the barnacles, the trio mention the Brownstone Formation is rich in fossils of other types, including, the oyster Exogyra ponderosa, several gastropods, a sponge, brachiopod, serpelid worm, bryozoans, nannoplankton, and the odd vertebrate, such as mosasaurs, sharks, and skates.

Zullo, Victor A., Russell, Ernest E., and Mellen, Frederic F. 1987. Brachylepas Woodward and Virgiscalpellium Withers (Cirripedia) from the Upper Cretaceous of Arkansas. Journal of Paleontology. Vol. 61(1):101-111.

Questions from Students

A couple of weeks ago, I visited Dodd Elementary in Little Rock. After I left, the students wanted more information and sent me several questions. I thought, rather than respond to them individually, I would post the answers here.

Did saber-toothed tigers live at the same time as mammoths in the Ice Age? How old are mammoths?

Yes, they did! They even lived together in Arkansas during the Ice Ages, along with the more commonly found mastodons (which were like the mammoths, but a bit smaller (about the size of modern elephants) and were more adapted for forests than the grassy plains preferred by the mammoths.

What most people refer to as the Ice Age was in fact a series of almost a dozen times in which the glaciers expanded to cover much more land than they do now. This period lasted from about a million years ago to 11-12,000 years ago during what is called the Pleistocene Epoch.

There were actually many different species of saber-toothed cats. The most commonly known is one called Smilodon, which lived between 2,500.000  years ago to about 10-12,000 years ago.

The first mammoths appeared around 6,000,000 years ago, but the Woolly mammoths and the Columbian mammoths (the type that lived in Arkansas), first appeared about 400,000 years ago. They came south from Canada into the United States about 100,000 years ago. While they died out in North America almost 12,000 years ago, there were a few that lived on Wrangel Island near Russia until less than 5,000 years ago.

I wanted to know if cavemen were alive because didn’t the dinosaurs eat them?

All the dinosaurs (except birds) died out over 65,000,000 years ago, but the first humans only appeared around 200,000 years ago. So humans and dinosaurs were separated by an enormous amount of time and never lived together. Humans did live alongside the mammoths and saber-toothed cats during the Ice Ages, though. Humans killed and ate mammoths and humans and saber-toothed cats killed each other (we don’t know if humans ate the saber-toothed cats, but we’re pretty sure they ate us).

How old is coral?

Coral is very, very, old. The first corals appeared over 500,000,000 years ago. However, none of these early types of coral still exist. They all went extinct (died out) and were replaced by types of coral that evolved (descended) from them. The modern corals that you can see today first appeared in the Triassic Period roughly 200,000,000 years ago (the first dinosaurs appeared about 240,000,000 years ago).

How big is a T. rex egg?

No one knows! No T. rex eggs have ever been found. We can guess they were up to a foot long and up to five inches wide, but that is just a guess based on what we know of eggs that have been found from its distant relatives. What we do know is that T. rex babies were a lot smaller than the adults would have been no bigger than a small turkey.

How long is a sea spider?

fossil_focus_pycno_4Sea spiders, or pycnogonids (pic-no-go-nids), can grow up to 25 cm (10″). They can be found in the southern oceans today. Fossils of sea spiders are rare, but have been found as far back as the Cambrian Period almost 500,000,000 years ago. Even though they look something like spiders, while they are arthropods like spiders, they are not really spiders and occupy their own group within the arthropods. They are very strange animals, with most of their organs in their legs.

Eurypterus-remipes-LI think you may have been referring to a different animal though, the sea scorpions, which was part of the fossil collection we saw in class. Even though they are called scorpions, they are not true scorpions, although they are related to them. These animals, called eurypterids (your-ip-tur-ids), were mostly no more than 30 cm (12″), but could get almost 2.5 meters (8′), making them the biggest arthropods ever known. The earliest fossils we have found were dated at 467,000,000 years, but they may have first appeared over 500,000,000 years ago. They died out at the end of the Permian Period just over 250,000,000 years ago, along with most of the life on the planet at the time.

What is the shortest sea dinosaur?

While there were sea-going reptiles, there were no sea-going dinosaurs that we know of. The closest that we know of right now were the spinosaurs, which spent much of its time wading in relatively shallow water. These dinosaurs were huge, some of them approaching 15 m (50′) or more, with the smallest ones only a modest 8 m (26′).

Of the sea-going reptiles, the most common ones were the dolphin-shaped ichthyosaurs (ick-the-o-sores), the lizards called mosasaurs (literally lizard, they evolved from monitor lizards like the Komodo dragon),  the generally short-necked and big-headed pliosaurs (ply-o-sores), and the long-necked plesiosaurs (please-e-o-sores, for the purists, plesiosaur can also refer to both pliosaurs and the more traditional plesiosaurs because the larger group containing pliosaurs and plesiosaurs is named after the plesiosaurs. yes, it is a bit confusing). And of course we can’t forget the sea-going crocodiles called metriorhynchids (met-re-o-rine-kids).

The smallest ichthyosaur, or “fish-lizard” named Cartorhynchus (cart-0-rine-cuss) was less than 0.5 m (15″) long. it was also the oldest known one at almost 250,000,000 years old. You may notice that the picture below says the smallest was 70 cm, but an even smaller one was found.


Dallasaurus (“Dallas lizard”), the earliest known mosasaur, was also the smallest mosasaur at no more than 1 m (3′).

The smallest plesiosaur was just over 1 m (3′).

Thalassiodracon, or “sea dragon”,  probably the smallest known and most primitive pliosaur, was 1.5-2 m (5-6.5′), so slightly bigger than its relatives, the plesiosaurs. All of the marine (sea-going) crocodilians were more than 2 m (6 ‘) and would have eaten the others, so we can rule them out for shortest marine reptile from the Mesozoic Era during the age of dinosaurs.

There is another group of marine reptiles that was also common during the Mesozoic, although they are not so widely known. The thallatosaurs, which literally means “ocean lizard” were as small as 1 m (3′). Finally, there was a sea turtle-like group called placodonts, of which the smallest were just under 1 m (3′).

Notice that most of them all start off at roughly 1 m, except for the ichthyosaurs, which started off at less than half of that, so the winner for shortest sea reptile of the dinosaur age is the ichthyosaur named Cartorhynchus.

What is the longest sea dinosaur?

The undisputed king of the marine reptiles was the ichthyosaur named Shonosaurus, also known as Shastasaurus, which reached 23 meters (75 feet).


Still not the largest known individual of the species.

jurassicworld mosasaur

Jurassic World mosasaur, still not as big as Shonisasaurus

The longest mosasaur is, coincidentally, Mosasaurus itself, potentially reaching lengths of 18 meters (59 feet), so not as big as Shonosaurus. This animal used to live in Arkansas. According to the most official statements, the mosasaur in Jurassic World was 22 meters (72 feet), so bigger than the real ones, but not by a terribly large degree, and still smaller than Shonisaurus.

The longest pliosaur was no more than 18 meters (59 feet), while the longest plesiosaur was no more than 15 meters (49 feet), so none of them come close.


How did they breathe underwater?

It does seem like animals who live in the sea should be able to breathe underwater, doesn’t it? But the aquatic (a fancy word for living in the water) reptiles didn’t. Like all reptiles, they had to come up to the surface to breathe. This is true for any reptile that swims in the ocean, including sea turtles and marine iguanas. The same is true for their distant relatives, the birds. Penguins have to breathe air, even though they can dive deep. It is also true for all mammals, such as whales and dolphins. So how do they dive underwater and stay underwater for so long? They hold their breath, just like we do when we swim. Only they are much better at it than we are and can hold their breathe for a long time.

What is the longest land dinosaur?

That is an excellent question. The problem is that we have no fully complete skeletons of the largest dinosaurs, so we have to estimate their sizes from the bones we have.


As you can see on the chart above, there are several dinosaurs that are similar sized. Diplodocus and Supersaurus got up to 33.5 meters (110 feet). Argentinosaurus got upwards of 35 meters (115 feet) or more. Bruhathkayosaurus (Bru-hath-kay-o-sore-us) was possibly around this size as well, but the fossil material is too little to get a good estimate and what we had has disappeared. However, the American Museum of Natural History in New York has recently put on display the largest dinosaur ever displayed and possibly the largest dinosaur ever known at over 37 meters (122 feet).It doesn’t even have a name yet and is just called the AMNH titanosaur. Of course, the biggest dinosaur ever found is so little known that it has become almost mythical. Amphicoelias has been estimated to have been  as long as 58 meters (190 feet). Unfortunately, all that was found of this animal was a few bones, including a vertebra that stood 2.7 meters (8.9 feet) tall. The bones were very fragile, in very poor condition, and were preserved in mudstone, which crumbled easily. All of the fossils vanished (possibly crumbled away and swept out), so all we have left is a few drawings and measurements of the bones.

How big was Apatosaurus?

According to the fossils we have, Apatosaurus typically got around 22 meters (72 feet), but could have gotten as long as 27.5 meters (90 feet). Weight is a very difficult thing to estimate for many reasons, but most estimates place an adult Apatosaurus somewhere between 20-40 tons (40,000-80,000 pounds, 18000-36000 kg), or about the weight of 4-8 adult elephants.


Illustratration by Darren Pepper,

What is the shortest land dinosaur? What is the smallest dinosaur?


Illustration by Matthew Martyniuk. 1.8 m human, Yi qi (green), Epidexteryx hui (orange), Scansoriopteryx heilmanni (red)

That depends on what you consider a dinosaur. Anchiornis was estimated to be 34 cm (13″) long, but was a young adult, so probably got at least 38 cm (15″). But some consider Anchiornis to be an avialan, the earliest group of birds. Parvicursor is the smallest known adult dinosaur that is definitely not a bird according to some people, at 39 cm. Epidextipteryx was only 44 cm (17″) if you include the tail feathers, but only 25 cm(10″) if you don’t include them. However, Scansoriopteryx, also known as Epidendrosaurus, was only about 16 cm (6″), but we only have young ones that would have grown larger, but we don’t know how much larger. Epidextipteryx and Scansoriopteryx may look like birds, but were actually in a different group of dinosaurs. If you consider modern birds, the bee hummingbird takes the prize as the smallest known dinosaur at less than 6 cm (2.5″) and weighing less than 2 grams, just over the weight of a single penny.

But if you are talking about shortest, meaning how tall they stood, that is harder to work out because it would depend on how they stood, but none of these animals would have stood taller than 20cm (8″) at most.

For comparison, these dinosaurs were about the size of a common crow or perhaps even smaller.

Can an 8 feet tall person be as tall as a dinosaur?

A person standing 8 feet tall would be taller than a lot of dinosaurs. A baby just learning to walk would be bigger than some dinosaurs. If we include modern birds, which are also dinosaurs, there are some dinosaurs that a new born baby could hold in their hands (the bee hummingbird is less than 2.5″ long and more than an inch of that is taken up by the beak and tail feathers).

When did the dinosaurs live? When were they born?


Nyasaurus, illustration by Mark Witton

The earliest known dinosaur is Nyasaurus, which was found in rocks thought to be 243,000,000 million years old during the Triassic Period, the first part of the Mesozoic Era. There is some uncertainty if this was an actual dinosaur, so if it wasn’t, that would make dinosaurs like Herrerosaurus and Eorapter (both of which looked similar to Nyasaurus) the oldest dinosaurs at about 230,000,000 years old.

When did the dinosaurs die?

Everything that most people call dinosaurs died out at the end of the Cretaceous Period, the third part of the Mesozoic Era, about 65,500,000 years ago. However, they didn’t all die out. One small group of dinosaurs survived, which are the birds. Today, birds are the most diverse group of terrestrial vertebrates (animals with a backbone living on land), so dinosaurs are alive and thriving.

How long did the dinosaurs live?

Dinosaurs were on earth for a very long time. From their beginnings over 240 million years ago to the end of the Cretaceous Period, they lived for around 175,000,000 years. If you include the birds, they have lived for over 240,000,000 years and are still going strong.

If you are talking about individual dinosaurs, they have varied lifespans. Just as you can find mammals that live no more than a year or so to mammals like us that can live over a hundred years old (the oldest known person lived to 122), you can find dinosaurs that lived like that. Some species of hummingbirds only live a few years, so we can expect that some other dinosaurs may have only lived a few years as well. The giant, long-necked sauropods were adults by their teens and may have lived as long or longer than we do. We reall

How old are T. rexes?

If you mean how long ago did they live, Tyrannosaurus rex lived at the very end of the Cretaceous Period, the last period of the Mesozoic Era, 68,000,000-65,500,000 years ago. If you wanted to know how old an individual T. rex could get, They did most of their growing when they were between 14-18 years old, reaching maturity between 16-18 years old. But they didn’t live long after that. All of them that we know of died before they were 30. Of course, whether or not they could have lived longer than that, we don’t know, but that is the ages of the fossils that we have.

How did the dinosaurs die?

Most of the dinosaurs died out at the end of the Cretaceous Period about 65,500,000 years ago when two major events happened. The first was eruption of one of the largest volcanic events in the history of the Earth. The volcanoes that formed the Deccan Traps in India were so massive, the rocks from the lava put out by these volcanoes are over 6000 feet deep. These eruptions happened over tens of thousands of years, maybe even millions of years.

But that wasn’t the worst thing. An asteroid hit in Mexico at the same time as the volcanic eruptions were taking place. It was estimated to be about 10 kilometers (6 miles) across and left a crater more than 100 miles across. Remnants of the crater can still be seen in Chicxulub, Mexico. If all the nuclear bombs in the world were exploded at the same time, it would not be as powerful as the impact of that asteroid.

Did some animals live after the volcano and meteor?

Amazingly enough, yes. If they had not, we would not be here. Every form of animal suffered heavy losses, but most did not die out completely. One small group of dinosaurs survived, which became the birds. A lot of mammals died out, but a lot also survived. Amphibians and crocodilians did reasonably well. Anything small, able to take shelter, and lie dormant (like squirrels hibernating in the winter) to conserve their energy and ride out the tough times did ok. In the oceans, anything large, needing a lot of food, or having shells had a hard time.All the large sea-going reptiles died out. Virtually all the shelled cephalopods (squid relatives) went extinct, but their unshelled relatives survived. Tiny organisms called plankton that lived in the ocean and made their shells out of calcium carbonate died out and were replaced by types that used silicon for shells. During the Cretaceous, the ones with carbonate shells were so common, when they died, their shells piled up and became huge layers of chalk, forming what became the famous White Cliffs of Dover in England and the chalk beds in southwestern Arkansas, among other places. But they almost all died out during the volcano and meteor impact and never became nearly as abundant ever again. The reason for this is because the asteroid and volcanoes released so much carbon dioxide and sulfur into the air that was soaked up by the oceans that the oceans became very acidic and lost a lot of oxygen. So anim

Of course, insects of all sorts survived, as did a variety of invertebrate animals like snails, clams, starfish and the like. But all of them took severe losses, especially those that were specialized to eat only certain plants or animals. One that had a more varied diet managed to survive.

How was it there? Was it dusty or cold there?

During the Mesozoic Era, the time of the dinosaurs, it was, in general, warmer than it is now and the temperature differences between seasons were not as extreme as today. The north and south poles were not permanently frozen over during this time like they are now. But much like today, there were all types of weather and environments. It was hot and dry in some places, it snowed in other places. There were swamps and prairies, forests, deserts, almost any environment you can think of existed then. The only environment you might not find would be glaciers, but you could probably even find them near the tops of mountains at times. Of course, they didn’t exist in the same place on earth and there were different dinosaurs that lived in different areas.

Also remember that the Mesozoic covered an immense span of time, so the earth changed during this time.

Why didn’t the dinosaurs need to fly?

Some dinosaurs did fly, but most didn’t. Most animals today don’t fly either. I expect most animals would if they could, but it takes a lot of changes to evolve the ability to fly. As animals evolve, they can’t decide they are going to develop flight. Small changes will appear in individuals from time to time and if those changes are helpful (or at least not harmful), then they get passed on and can spread through the population. To develop flight, a large number of changes have to happen, so only a few types of animals have evolved in the right way to develop flight. Once they did though, it was very effective, which we can tell by looking at the large number of birds and insects and even bats that can fly.

Is it true that fish had sting rays?

Southern-stingray-dorsal-viewThere are some fish called stingrays and they do indeed have venomous spines on the tail, which can be painful and occasionally deadly if they sting someone. They only use them in self defense though, so they won’t hurt anyone unless they feel threatened.

Stingrays are common today and can be seen in many aquariums. But they are also found as fossils and have been around for millions of years. We have even found fossils of stingrays in Arkansas. They do not have bones like we do, but we do find lots of their teeth, which look like flat rectangles. They use these flat teeth for crushing shells of clams and other animals.

What was the tiny thing at the bottom of the smart board?

I’m sorry, I don’t know what you are referring to. Was it on the timeline? Please let me know and we can figure it out.

How many bones have you found?

I have found lots of shells and crinoids. I have found a handful of shark teeth. But I haven’t found too many bones. When I was on a dig in Argentina, I did find a pelvis (hip bones) of a sauropod (the giant, long-necked dinosaurs). I also found part of a skeleton of an archosauromorph (the ancestors of crocodiles and dinosaurs). When I worked in Wyoming and Colorado, I found several fossil turtle shells and part of the horn of what may have been a uintathere or some similar animal (rhino-like mammals with knobby horns and bumps on their heads). I also found several tiny bones of rat-sized mammals. I don’t know what they were, but I remember one place where the bones looked like turquoise (a greenish-blue gemstone).

What I would really like to find would be a dinosaur in southwestern Arkansas, although the skull of a mosasaur or elasmosaurus would be a close second. There are opportunities for finding fossils in most of the state, so keep looking and let me know if you find something!

Holiday Fun in Arkadelphia

Wow. I can not believe that I have not posted anything here since Halloween. My New Year’s Resolution is to not let that happen again. I have no excuses. But as was said on the Syfy show The Expanse, “We can not change the things we’ve done, but we can all change the things we do next.”

For this post, I want to relate the trip I took to Arkadelphia just before the Christmas holidays to visit the Goza Middle School on the invitation of one of their science teachers, Trent Smith. That trip will benefit many people in the future, and it also provided a chance to see some Arkansas geology and paleontology that may prove interesting to fossil enthusiasts.

The fossils that started this off. Picture by Trent Smith

The fossils that started this off. Picture by Trent Smith

This all started with an email I got from Trent Smith, who had found some fossils he wanted help identifying. After looking at the attached photo, I tentatively identified most of them as specimens of Exogyra ponderosa, a common oyster from the Cretaceous Period. There also appeared to be a goniatite ammonoid, a Cretaceous Period cephalopod, or squid relative. I could not be sure just from looking at the pictures, so I offered coming down to take a look at them in person. Trent was amenable to that and after a few emails back and forth, we arranged to not only look at his fossils, but talk to his eighth grade science class while I was there. It turned out that the school was interested in me talking to multiple classes, which all told was about 160 students. They suggested I could either give one talk to all of them at once, or I could do multiple talks to individual classes. I much prefer the smaller groups where people can get a more hands on experience with the fossils and have more opportunity for students to ask questions, so I opted to give several talks. I wound up giving seven talks, with two of the talks to combined classes. So I had the opportunity to speak with a lot of students.

When I got there, Trent helped me bring in my boxes and took me to his room to start setting up. Goza Middle School students are fortunate to have great science teachers who are passionate about science and education. Trent’s classroom fossil collection was by far the largest fossil collection I have ever seen in a public school classroom. They have a good variety of most of the invertebrate fossils that can be found in Arkansas. They also had a fabulous nautiloid ammonoid 4″ across or more. I had a shell of a modern Nautilus, a genus of the only extant ammonoids, so the students were able to compare a modern version with one over 70 million years old.

For each class, I gave a short introduction to the fossils that can be found in the state, which is much more diverse than most people realize. I also gave them a quick demonstration of the immense expanse of time we were discussing. I have a timeline that stretches eighteen feet and covers 600 million years. People are usually suitably impressed with that timeline, but when I tell them how much space our civilization represents on the timeline, they are stunned. At that scale, all of human recorded civilization is approximately the width of one human hair. Afterwards, we let the students look at the fossils I brought and ask questions. The students were more reluctant to get out of their seats and approach the front table than the younger kids I usually talk to, which I found interesting and speaks to how quickly we train our students to sit and listen without interaction. But once they got over their training, they enjoyed being able to handle the fossils and examine them close up. The students were uniformly polite and well behaved and were a pleasure to talk with. Midway through, the teachers treated me to a tasty potluck lunch.

My new favorite shirt

My new favorite shirt

If everything was left at that, it would have been a great trip and I would be happy to return, but they really went above and beyond. In addition to lunch and a small donation (I have generally not asked for payment for classroom visits in the past and as a result, getting paid for it almost never happens, but getting paid means I can go to more classes so is greatly appreciated), they provided me with even more. They gave me my first two Paleoaerie shirts, which they designed and they did a fantastic job. On the front of both shirts is a dinosaur foot that looks like the foot of Arkansaurus, the only dinosaur bones ever found in the state, and my name, Dr. Daniel. On the back of one shirt, it has the dinosaur foot with the words PALEONTOLOGY above it and DIGGING UP KNOWLEDGE below it. On the back of the second shirt, it says PALEOAERIE.ORG followed by my three statements of what guides my efforts: The universe is endlessly amazing, knowledge is useful only when it is shared, and you can’t really know something unless you understand how and why we think we know it. The shirts are going to be my uniform for future talks.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

After school was over, Trent showed me a spot he has collected fossils from on Wp Malone Road, just west of I-30. According to the Arkansas Geological Survey’s geologic map of the Arkadelphia quadrangle, the area is listed as being in the Nacatah Sand, an Upper Cretaceous formation consisting of a mix of unconsolidated sediments deposited in a nearshore marine environment. However, the marl, a limey clay, we found in the creek looked more like it came from the Marlbrook Marl, a formation that lies underneath the Nacatah and separated from it by the Saratoga Chalk formation. The Saratoga Chalk is not thick in this area, so it is quite easy to go from the Nacatah to the Marlbrook in a very short distance. In this particular locale, the Marlbrook is close by and it is likely that what we found was washed downstream to where we found it. As I recall, Trent mentioned that fossils were more common the farther upstream one went, which would support this idea. The Marlbrook Marl, when fresh, is a blue-gray lime clay, or marl, laid down in nearshore, shallow marine environments, just like the Nacatah Sand, but without the sand contribution. The upper part of the Marlbrook is also famous for being extremely fossiliferous and this site was no exception. I initially attempted to collect what I found, but very quickly realized there were so many shells that it was impossible to carry them all. The great majority of what we found were shells of Exogyra ponderosa, but the numbers would have allowed us to quickly fill a crate with specimens. We also found a few snail shells (of what type I am not sure) and a terebratulid brachiopod, but the numbers of everything else did not begin to compare with the shells of Exogyra. On other trips, Trent collected numerous Exogyra shells and gave me two boxes full of shells. Thanks to him, I will be able to supply many Arkansas classrooms with actual Arkansas Cretaceous fossils.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site. Click to enlarge.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

This area is a nice place to collect. As long as one is on public land (or with the permission of the land owner), you can collect any of the invertebrates you want, so you can feel free to collect Exogyra shells here. But the Marlbrook also contains more than just oysters, brachiopods, and snails. It has also yielded mosasaurs and even the occasional elasmosaur. There is even the possibility that a dinosaur was washed out to sea and could be found there. So if you collect in this area and find some bones, give me a call.

Many thanks to Trent Smith and the whole of Goza Middle School, not just for your hospitality, but for living the statement of Dr. Scott the Paleontologist on Dinosaur Train: “Get outside, get into nature, and make your own discoveries.”