Home » Posts tagged 'science'

Tag Archives: science

National Online Learning Day

September 15 is National Online Learning Day. Now that everyone should be well and truly back to school, I thought it would be a good time for a few miscellaneous notes on various resources.

Online Courses

Evolution: A Course for Educators. American Museum of Natural History via Coursera. Learn about evolution from an expert at one of the best places in the world to study it. Taught by Dr. Joel Cracraft, the course will cover everything you need to teach evolution well. The course is free and offers a paid certificate for teacher professional development hours. It is four weeks long and requires 5-8 a week. It begins October 1st, so you will be done by Halloween.

Introduction to Human Evolution. Wellesley College via edX. A subject that is endlessly fascinating, but seldom taught in schools. Learn about the origins of us from an expert. Taught by Dr. Adam Van Arsdale, the course is self paced, meaning you can start when you want. It takes 4-6 hours for four weeks and is free.

Paleontology: Theropod Dinosaurs and the Origin of Birds. University of Alberta via Coursera. A five week course headed by the esteemed dinosaur expert Dr. Phillip Currie on the anatomy, diversity, and evolution of theropods leading to birds. They offer a paid certificate for those needing the credit. Expect to spend 4-7 hours a week on the course. The course is free, but it started September 12, so join up now before you get too far behind.

Paleontology: Early Vertebrate Evolution. University of Alberta via Coursera. This course covers the evolution of vertebrates through the Paleozoic Era and is taught by Dr. Alison Murray. This is a four week course with an expected 3-5 hours per week. This course is free, but offers a paid certificate for those who need the credit. This course also started September 12th, so sign up now.

Dinosaur Ecosystems. University of Hong Kong via edX. A six week course on dinosaurs in their habitats. The course is taught by a collaboration of Dr. Michael Pittman and Dr. Xu Xing, along with other guests, all with an abundance of expertise on the topic. As a bonus, the course includes the work of one of my favorite paleoartists, Julius Csotonyi. The course requires 1-2 hours a week, so not a big time commitment. It is free, although it does offer a paid certificate for those who need the credit, and starts October 4th.

Dino 101: Dinosaur Paleobiology. University of Alberta via Coursera. Another course by Phil Currie, along with Dr. Betsy Kruk. This is a great introduction to dinosaurs. It is 12 weeks long and requires an estimated 3-10 hours per week, so expect more out of this course. The course is free and starts September 29th, so get signed up now.

Origins – Formation of the Universe, Solar System, Earth and Life. University of Copenhagen via Coursera. Learn how it all began by Dr. Henning Haack. This course is 12 weeks long and expects 5-7 hours a week. The course is free and starts September 17th, so don’t waste time signing up.

There are several more available. If you go to any of the course links shown here, they will guide you to other related courses that are available.


Tetrapod Zoology. Darren Naish has kept his blog, often abbreviated to TetZoo, for over a decade. Through all the years, he has provided multitudinous essays on a variety of animal groups, both extant and extinct. Sprinkled in are also essays on the truth of cryptids (Bigfoot, Nessie, and the like), paleoart, and other topics. Sadly, the blog at Scientific American has closed up shop. But don’t panic, because it has moved to another location. He has set up shop under his own banner at Time to change your bookmarks.

Beautiful Minds. Scott Barry Kaufman has been writing a Scientific American blog about psychology off and on. He recently announced an upgrade to the blog allowing him to have a weekly online column, so expect more articles about human nature from him.

Science Sushi by Christie Wilcox has always been one of my favorite blogs. While I am not a marine biologist by any stretch, she has always been interesting to read. So it is sad to report her Discover blog is closing up shop. She is moving to, but will not be adding regularly to it. She will continuing to write, so keep an eye out for her on the sites she lists in the post linked to here.

Dataset Search. You’ve heard of Google Search, Google Scholar, Google Maps, and a plethora of other ways Google lets people search the web. Now meet Dataset Search, for when you are trying to find data that has been published or stored online. This searches for data files or databases according to how they are identified, not by what is in the file.

Science without publication paywalls: cOAlition S for the realization of full and immediate Open Access, by Marc Shiltz. PLoS Biology. 2018. This article discusses Plan S, a proposal by a coalition of European leaders to make science articles free for everyone. In their words,  “no science should be locked behind paywalls!” (emphasis theirs).

Seriously, Science? A great blog on that covered weird and humorous published research has been canceled. No word on why, the authors just said they were informed they would no longer have a slot on the blog roll. So long, Seriously Science, it was good to have known you.


Return to Reason: The Science of Thought, by Scientific American. 2018. This ebook is a collection of essays discussing why facts don’t seem to matter to people or help persuade them and what we can do about it. Well worth a read.

Timefulness: How Thinking Like a Geologist Can Help Save the World, by Marcia Bjornerud. Princeton University Press. 2018. Most people can barely remember what they had for breakfast yesterday. We really aren’t well equipped to think about time on the scale of millions and billions of years. Dr. Bjornerud has written a great book to help people come to grips with the immensity of time. I highly recommend it.

Underbug: An Obsessive Tale of Termites and Technology, by Lisa Margonelli, Scientific American/Farrar, Straus and Giroux, 2018. This book is not really about termites. The study of termites is used as an illustration of scientific inquiry and the questions that researchers come across during their studies. There are questions about the termites, but also about how science is done and about humans viewed through a different lens.

Darwin and the Making of Sexual Selection, by Evelleen Richards. University of Chicago Press. 2017. This book tells the story of how Darwin figured out problems with natural selection by coming up with sexual selection. To my mind, sexual selection is a subset of natural selection, but it is generally viewed as separate, with natural selection being success based on fecundity and survival of offspring, whereas sexual selection deals with the choices of mates. However you look at it, sexual selection is an important concept and this book explores the origin of that idea.

The Dinosaur Artist: Obsession, Betrayal, and the Quest for Earth’s Ultimate Trophy, by Paige Williams. Hachette, 2018. Williams tells the story about a skeleton of a Tarbosaurus bataar, what could be described as a Mongolian Tyrannosaurus rex, and the long and confusing battle of who owned it and where it would eventually reside. The worldwide fossil trade is a morass of differing opinions, laws, and money. This book attempts to tease apart the strands to answer the question of who owns fossils.

Through a Glass Brightly: Using Science to See Our Species as We Really Are, by David P. Barash. Oxford University Press, 2018. As the great physicist Richard Feynman said, “The first principle is that you must not fool yourself–and you are the easiest person to fool.” Humans are masters of deluding ourselves, but science helps us remove the wool we place over our eyes to see things, and ourselves, as we truly are. Only then can we become the people we see ourselves as. That is the goal of evolutionary biologist Dr. Barash in this book.

The Book of Why: The New Science of Cause and Effect, by Judea Pearl and Dana McKenzie. Basic Books, 2018. A big problem that any educator sees is the rather unbelievable lack of understanding many people have about cause and effect. Please get this book and teach people about how cause and effect works. Since this book relates the science of cause and effect to robots and artificial intelligence, it will be the perfect addition to tech classes.

I think that is enough for now. It is certainly enough to keep you busy if you try even a few of the many offerings available for furthering your education or just indulging your curiosity. Enjoy. If you try them, come back and let us know what you thought of them.

The Difference between Scientists in Real Life and Scientists on TV

Many people have an issue with scientists, particularly those studying evolution and paleontology, for making statements they feel are pure speculation. I absolutely agree that people should be upfront about what is known and what is speculation. Most scientists ARE generally clear about that. If you ask most scientists, they will tell you what we know and don’t know. That is actually one of the biggest problems that scientists have with almost all of the shows and most of the books written for the public. Those outlets are not clear about what we really know and what we don’t, what is speculation. Most scientists I know work really hard at trying to clarify that sort of thing and get very frustrated when their words are twisted around. Many scientists have refused to work with film crews for precisely that reason. So please don’t blame the scientists. Write to the shows and demand they are clear about their speculations.


Sadly, I wish I could say all scientists act this way, but it is true, not all do. Scientists are only human after all. There are problems with some scientists. Believe me when I tell you that we recognize this and try to stop it. The lab I worked in to get my doctorate had a reputation for being spoilers, as it were, because a large portion of our research involved figuring out the limits of what the data really let us say and then telling others no, you can’t say that because the data do not extend that far. Our work was very much about separating speculation from reasonable interpretation and fact. But we were hardly alone in that regard, it is something most scientists work hard to do. Paleontology is admittedly one of those fields in which it is easy to take the fossils we have and in our excitement try to say too much about them. So we do our best to restrain ourselves and other workers from extrapolating too far. Go to a paleontology conference and you will see that on display in abundance.

When a paleontologist goes too far, it's up to other paleontologists to stop them. by "Dinobear"

When a paleontologist goes too far, it’s up to other paleontologists to stop them. by “Dinobear”

Unfortunately, that rarely shows up in material done for the public. The film crews and honestly, most of the public, do not want to hear we don’t know. They want to hear the fanciful stories.  Most people get annoyed with scientists when they equivocate and don’t give straight answers. We frequently hear from people, well which is it? Is it this way or that way? If you can’t say with absolute certainty one way or the other, you must not know ANYTHING, when in point of fact, there is a vast difference between not being sure and not knowing anything, I am sure most will agree. But most people don’t want to hear we don’t know with certainty, we can only say this much about it. I have even seen that in my college courses. Many students are uncomfortable with the material I cover in which there are no good answers everyone agrees on. They want definitive answers. A large part of that, I think, is that science is taught in schools very poorly, as a list of facts to memorize, not as a way of thinking and an expanding body of knowledge that is constantly re-examined, with large areas we don’t know yet. In fact, and what makes science fun and interesting for people doing it, is that science is more about what we don’t know than what we do. But happily, I can say that is changing in many areas, with the introduction of more hands-on, exploratory teaching methods.

One of the challenges though, is that many things the lay person thinks are pure speculation are not speculation at all, but are backed up by lots of evidence that there is simply not enough time to go into. Many computer programmers simply tell their clients what they do is magic because to answer their questions adequately would take months of training to even get them to the point they could understand the answer. Would you tell a computer programmer what they are doing is pure speculation simply because you don’t understand it? We aren’t trying to be elitest, there is just a lot of information we don’t have time to transmit. There is simply too much going on, too much data, too much research for anyone to keep track of it at all. Even professionals who try to keep up as part of their full-time job can’t do it. So it would be foolish to think anyone who doesn’t spend most of their time studying the research could possibly have a good grasp of the intricacies and quantity of data. It therefore becomes quite the annoyance when people say you can’t know something when they have no idea how much we do know. Many of those things people say we can’t know have been studied for decades by many people who have spent their lives figuring out how to go from speculation to concrete data and hard fact. Most people don’t realize the extreme levels of simplification it takes to get some concepts across because no one can provide all the data backing up those assertions without having their audience earn a graduate degree in the process.

Is all this me telling you to just trust whatever we say? Absolutely not.  But don’t expect to come in on the ground floor and know what is going on at the top any more than you could expect to speak perfect French by catching someone speak a few words on TV. Understand that you are only getting the tip of the iceberg. What you see on TV is a seriously flawed transmission of a few grains of knowledge from a mountain range of data. Learn as much as you can from reliable sources. The more you know, the richer your interactions with professionals and the more in depth we can talk to you. We will be happy to share with you everything we know, that’s our job. But what we tell you is highly dependent on the level at which you come to us and the amount of time people are willing to spend. Also understand the quantity of data is more than any one person can understand, even those whose job it is to do so. That is why we have many people studying problems. No one can have all the answers. That is why we keep asking questions. Being open about what we know and what we don’t allows us the freedom to learn more and shows us the path about where to go next. Scientists don’t leave things at speculation, they try to figure out how can we go from speculation to understanding. But if you want to understand all the steps involved, may I suggest grad school?