paleoaerie

Home » Posts tagged 'science education'

Tag Archives: science education

Why We Need To Understand Evolution (and why we need a natural history museum)

With all that has been going on in the world and all the important societal problems, I have been despairing that my desire to push for a natural history museum and more evolution education seemed not as important. But it struck me today that it is perhaps one of the most important things we need to do. There are a lot of misunderstandings about evolution, even among people who accept it, that hinder our ability to get along in the world. Understanding two important truths of evolution will go a long way towards healing our societal divides. What are those truths? 1. We are all the same, and that is a good thing. 2. We are all different, and that is also a good thing. These may seem contradictory, but if you understand how they are meant, they make perfect sense.

  1. We are all the same, and that is a good thing.

When you start really studying life on this planet, it quickly becomes inescapable that we are all connected. We are all part of the same family. Strip off the skin from humans and we see essentially the same underneath. We all share the same skeletons, our muscles and organs are the same, there are no important differences in our brains. Sure, there are differences, but no matter what way we try to divide humans, especially by skin color or nationality, we find that the differences within the groups are greater than the differences between groups. What this means is that the dividing lines are arbitrary and have no biological basis.

When we go beyond humans and look at all vertebrates, we see the same thing. If we compare skeletons, we see the same bones over and over again. Every animal that has four limbs shares the same bone structure. They may look different, but the bones are all the same. All of our front limbs have a humerus, an ulna, and a radius. We all have the same number of fingers and toes. They may look different, they may lose some as they grow from fetus to adult, but they are all there. As we get farther and farther away from direct ancestry and relationships, the superficial differences start piling up, but the core is always the same.

Going even farther, we all share the same base code. We all use essentially the same DNA and RNA. The sequences may be different, but just as all computer programs are different, they all share the same underlying coding language. We all share metabolic pathways, from bacteria to humans.

Why do we see all these similarities? Because we all share an ancestor. Somewhere down the line, we are all related. We are one family. It may be a very extended family, but we are all together. All life on Earth is connected. Through that life, we are all connected to the very rock upon which we stand. Life has shaped the surface of the Earth. It has shaped the air we breath. We all sprang from the same roots. When you look at someone from a different culture, someone with a different skin color, you are not seeing an other, you are seeing a long separated family member. Embrace that connectedness. Now, I know that no one can get more under your skin and angry than a close family member, but at the end of the day, we don’t generally let that tear us apart. No matter how much we may disagree with our family, we still recognize they are family. Just take that feeling and extend it to recognize that every living thing on Earth is also part of your family.

2. We are all different, and that is a good thing.

So if we are all essentially the same, how can we all be different? No matter how closely we are related to someone, there are always differences. Even identical twins are not completely identical. Our DNA and life experiences mean that each and every one of us is different in some way from everyone else. While we all share the same basic body plan and organization, there are always some differences.

Those differences are important. Ask any agricultural scientist and they will tell you that one of, if not the biggest danger in our food supply is the monoculture crops we grow. When everything is the same, that means they also share all the same limitations and vulnerabilities. Monocultures only work when there is no change. But they do not handle change well. And if there is one thing we know about life, it is that change is inevitable. These days, we are pushing change faster than ever before, so this vulnerability to change is deadly.

Purity is the death of a species. We need diversity to weather changes. As new diseases crop up, as weather becomes more unpredictable and changeable, we will need the diversity to be able to handle whatever is thrown at us. The more diverse the population, the more changes we can tolerate. In a diverse population, there will always be some fraction of the population that is prepared for anything that happens. Those people will make sure that we continue. Moreover, they will help those of us unprepared for the changes make it through. When a new disease appears, those that are naturally immune will be key to developing medicines that will allow the rest of us to survive. Those that can handle climatic changes will be the ones to build the structures and infrastructure that will allow the rest of us to weather the storms. We need diversity. If we try to homogenize our culture and our people, we will die.

We need evolution education and a natural history museum.

So how do we get people to understand this? First of all, on a broad scale, we need to teach people a proper understanding of evolution and evolutionary theory. But we have to do it in a way that exemplifies its importance in our everyday lives. We need to get people to understand why they need to understand it. Evolutionary theory affects us every day. People need to understand how.

We need natural history museums for a multitude of reasons, but two very important ones apply here. First, they will stand as storage houses of information. They are a public recording of the changes that have taken place and are taking place. Secondly, they are a way to teach people who are not in school. Even if they don’t pay that much attention to the details in the museum, they will see a record of the changes. Museums can be designed to showcase the importance of evolution, the advantages of diversity, and the dangers of reducing that diversity. Museums are one of the most trusted sources of information. We need to leverage that to showcase both the interconnectedness of life on Earth and its diversity and why that has allowed its continued existence. It also can showcase what happens when that diversity is not there.

One may argue that history museums would be better at this. The advantage of history museums is that it makes it personal and easy to make it easy for people to relate to it. The disadvantage is that it makes it personal and easy for people to get defensive about it. Natural history museums can teach these lessons on a canvas that people can view and learn from more dispassionately, without it feeling like a personal assault upon their culture that can often happen in history museums.

To be sure, many people will feel that any mention of evolution is an assault upon their worldview, so I am not advocating the idea the natural history museums are inherently better. Instead, I am advocating the view that all types of museums work better when there is a diversity of museums that can tell the stories from different angles. Without a natural history museum, we lack an important viewpoint in the public arena. By building a museum network, we can spread the ideas much more effectively. A natural history museum will not hurt other local museums. It will help all of them. We don’t need just a natural history museum. We need a natural history museum, a local history museum, an international history and cultural museum, an art museum, and other museums. In Arkansas, we have some of the history, art, and culture, but we do not have a natural history museum. As such, we lack that long and broad view that can only come from an understanding of natural history.

 

Arkansas Curriculum Conference 2016

On November 4th, I presented a workshop on evolution at the Arkansas Curriculum Conference. The workshop was sponsored by TIES, the Teacher Institute for Evolutionary Science, an organization dedicated to helping teachers teach evolution, itself sponsored by the Richard Dawkins Foundation for Reason and Science.

Unfortunately, the wifi died right at the beginning of my talk, so the videos embedded in the talk were not able to be played. So for those of you who attended, and for those of you who would like to see the talk, I am posting the powerpoint file here. I know, it is incredibly overdue, but in my defense, the world took a sharp turn into weirdness right afterwards and then we had Thanksgiving. Any of you who are teaches or students also know what a crazy time of year this is. At any rate, here is the powerpoint. I will see about trying to record some audio for it at some point, along with the other talks I have meant to put up. We will see how that goes over the holidays.

If you go to the TIES website, you will see a version of this talk. I have modified it to include more information on fossil formation, which I skimmed over, for the most part, in the workshop itself. I focused more on the slides discussing why learning evolution is important in the first place. It has far more everyday impacts than most people imagine and is well worth understanding even if one believes in creationism or doesn’t care about esoteric biological concepts at all (for instance, if you are a cutting edge software or robotics designer).

2016-acc-evolution-workshop

In addition, there are a couple of other things I wanted to post. First is an icebreaker activity that TIES provided. In this activity, participants determine whether or not a series of statements about evolution are true or false. In a twist that catches most people off guard, they are ALL false. They are all commonly held beliefs about evolution, but they are all wrong, which makes a good way to start a conversation about the topic.

evolutionfactorfictionunitopener

Here are the statements and a very brief explanation of why they are wrong, as supplied in the document. Further clarifications and discussions are happily supplied upon request.

1. Charles Darwin developed the theory of evolution.
The theory of evolution existed before Darwin; it was Darwin’s Theory of Evolution by Natural Selection that became widely accepted.

2. Living things adapt to their environment.
As a whole, living things are adapted to their environment. Individuals are unchanging, they either live or die based on the traits they are born with.

3. Biologists “believe” in evolution.
Science is not based on belief. The theory of evolution provides a model for scientists to understand the relationships between organisms on the planet.

4. Monkeys will eventually become human.
There are many species of primates and all are adapted to their environment. A chimpanzee would not turn into a human over time anymore than a cheetah would turn into a lion (or vice versa).

5. Evolution is JUST a theory.
Saying that it is “just” a theory implies that it is a guess, or that its not well supported. There is much evidence to support the theory of evolution, as well as direct observation of species change.

6. Only atheists accept the Theory of Evolution.
Scientists of many religions across the world accept evolution, and do not find it incompatible with their faith.

7. If evolution is disproven, creationism must be true.
A problem with logic (disconfirming evidence). Even if you disproved evolution, you would have to develop and support another model of organism diversity. Disproving one, doesn’t
prove the other.

8. No one has ever seen evolution happen.
In organisms that reproduce quickly (like bacteria) changes in species can be directly observed, such as resistances to antibiotics.

9. Order cannot come from disorder, so evolution is false.
Many instances in nature show molecules and substance organizing, such requires energy. The sun provides the energy that ultimately fuels all of life’s processes.

10. There is evidence that dinosaurs lived with humans.
There is no evidence that suggests humans and dinosaurs lived at the same time.

11. Scientists regularly debate that evolution occurs.
Scientists debate elements of evolution, relationships between organisms, and fossils. The only place the evolution debate really happens is in the social settings.

12. Creationism is a valid scientific theory and should be presented with evolution. Creationism violates the scientific principle of natural causality.

13. There are no transition fossils. Museums are filled with fossils that show intermediate species.

14. Carbon dating is not accurate, therefore the age of the earth cannot be determined.
Carbon dating is one of many methods used to date the earth. Taken as a whole, the evidence is overwhelming that the earth is very old.

There is also a dice game that I want to share with you demonstrating how natural selection works, but that will have to wait until next post.

 

Holiday Fun in Arkadelphia

Wow. I can not believe that I have not posted anything here since Halloween. My New Year’s Resolution is to not let that happen again. I have no excuses. But as was said on the Syfy show The Expanse, “We can not change the things we’ve done, but we can all change the things we do next.”

For this post, I want to relate the trip I took to Arkadelphia just before the Christmas holidays to visit the Goza Middle School on the invitation of one of their science teachers, Trent Smith. That trip will benefit many people in the future, and it also provided a chance to see some Arkansas geology and paleontology that may prove interesting to fossil enthusiasts.

The fossils that started this off. Picture by Trent Smith

The fossils that started this off. Picture by Trent Smith

This all started with an email I got from Trent Smith, who had found some fossils he wanted help identifying. After looking at the attached photo, I tentatively identified most of them as specimens of Exogyra ponderosa, a common oyster from the Cretaceous Period. There also appeared to be a goniatite ammonoid, a Cretaceous Period cephalopod, or squid relative. I could not be sure just from looking at the pictures, so I offered coming down to take a look at them in person. Trent was amenable to that and after a few emails back and forth, we arranged to not only look at his fossils, but talk to his eighth grade science class while I was there. It turned out that the school was interested in me talking to multiple classes, which all told was about 160 students. They suggested I could either give one talk to all of them at once, or I could do multiple talks to individual classes. I much prefer the smaller groups where people can get a more hands on experience with the fossils and have more opportunity for students to ask questions, so I opted to give several talks. I wound up giving seven talks, with two of the talks to combined classes. So I had the opportunity to speak with a lot of students.

When I got there, Trent helped me bring in my boxes and took me to his room to start setting up. Goza Middle School students are fortunate to have great science teachers who are passionate about science and education. Trent’s classroom fossil collection was by far the largest fossil collection I have ever seen in a public school classroom. They have a good variety of most of the invertebrate fossils that can be found in Arkansas. They also had a fabulous nautiloid ammonoid 4″ across or more. I had a shell of a modern Nautilus, a genus of the only extant ammonoids, so the students were able to compare a modern version with one over 70 million years old.

For each class, I gave a short introduction to the fossils that can be found in the state, which is much more diverse than most people realize. I also gave them a quick demonstration of the immense expanse of time we were discussing. I have a timeline that stretches eighteen feet and covers 600 million years. People are usually suitably impressed with that timeline, but when I tell them how much space our civilization represents on the timeline, they are stunned. At that scale, all of human recorded civilization is approximately the width of one human hair. Afterwards, we let the students look at the fossils I brought and ask questions. The students were more reluctant to get out of their seats and approach the front table than the younger kids I usually talk to, which I found interesting and speaks to how quickly we train our students to sit and listen without interaction. But once they got over their training, they enjoyed being able to handle the fossils and examine them close up. The students were uniformly polite and well behaved and were a pleasure to talk with. Midway through, the teachers treated me to a tasty potluck lunch.

My new favorite shirt

My new favorite shirt

If everything was left at that, it would have been a great trip and I would be happy to return, but they really went above and beyond. In addition to lunch and a small donation (I have generally not asked for payment for classroom visits in the past and as a result, getting paid for it almost never happens, but getting paid means I can go to more classes so is greatly appreciated), they provided me with even more. They gave me my first two Paleoaerie shirts, which they designed and they did a fantastic job. On the front of both shirts is a dinosaur foot that looks like the foot of Arkansaurus, the only dinosaur bones ever found in the state, and my name, Dr. Daniel. On the back of one shirt, it has the dinosaur foot with the words PALEONTOLOGY above it and DIGGING UP KNOWLEDGE below it. On the back of the second shirt, it says PALEOAERIE.ORG followed by my three statements of what guides my efforts: The universe is endlessly amazing, knowledge is useful only when it is shared, and you can’t really know something unless you understand how and why we think we know it. The shirts are going to be my uniform for future talks.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

After school was over, Trent showed me a spot he has collected fossils from on Wp Malone Road, just west of I-30. According to the Arkansas Geological Survey’s geologic map of the Arkadelphia quadrangle, the area is listed as being in the Nacatah Sand, an Upper Cretaceous formation consisting of a mix of unconsolidated sediments deposited in a nearshore marine environment. However, the marl, a limey clay, we found in the creek looked more like it came from the Marlbrook Marl, a formation that lies underneath the Nacatah and separated from it by the Saratoga Chalk formation. The Saratoga Chalk is not thick in this area, so it is quite easy to go from the Nacatah to the Marlbrook in a very short distance. In this particular locale, the Marlbrook is close by and it is likely that what we found was washed downstream to where we found it. As I recall, Trent mentioned that fossils were more common the farther upstream one went, which would support this idea. The Marlbrook Marl, when fresh, is a blue-gray lime clay, or marl, laid down in nearshore, shallow marine environments, just like the Nacatah Sand, but without the sand contribution. The upper part of the Marlbrook is also famous for being extremely fossiliferous and this site was no exception. I initially attempted to collect what I found, but very quickly realized there were so many shells that it was impossible to carry them all. The great majority of what we found were shells of Exogyra ponderosa, but the numbers would have allowed us to quickly fill a crate with specimens. We also found a few snail shells (of what type I am not sure) and a terebratulid brachiopod, but the numbers of everything else did not begin to compare with the shells of Exogyra. On other trips, Trent collected numerous Exogyra shells and gave me two boxes full of shells. Thanks to him, I will be able to supply many Arkansas classrooms with actual Arkansas Cretaceous fossils.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site. Click to enlarge.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

This area is a nice place to collect. As long as one is on public land (or with the permission of the land owner), you can collect any of the invertebrates you want, so you can feel free to collect Exogyra shells here. But the Marlbrook also contains more than just oysters, brachiopods, and snails. It has also yielded mosasaurs and even the occasional elasmosaur. There is even the possibility that a dinosaur was washed out to sea and could be found there. So if you collect in this area and find some bones, give me a call.

Many thanks to Trent Smith and the whole of Goza Middle School, not just for your hospitality, but for living the statement of Dr. Scott the Paleontologist on Dinosaur Train: “Get outside, get into nature, and make your own discoveries.”

Dinosaurs by Aliki

Aliki Brandenberg, known mostly simply as Aliki, has written several popular books for children in the Let’s-Read-And-Find-Out Science series published by Harper Collins. Among these books are ones about fossils and dinosaurs written for 5 to 9-year -olds (I think 4-8 would be a better range, as many 4-year-olds will like the books and most nine-year-olds will have moved on to books with more information). When they came out in the 1980s, they were widely regarded as excellent books for children. The books were voluminously illustrated with colored pencil drawings of fossils and people studying them. The main text was supplemented with word balloons for the human characters, supplying interesting tidbits and additional information, so should not be ignored. Unlike many books of the time, these were about as accurate as one could expect to get without going into so much detail that a person of that reading level would feel overwhelmed.But it has been 25 years or more since then. We’ve learned a lot since then. How have they held up? Surprisingly well, for the most part, better than the majority of books published at the same time. I will review four of them here, two in this post and two in a following post. Some people might find the reviews a bit lengthy, so here they are in a nutshell: still good reads for kids, even better with a few additional comments to update them and correct a few misconceptions that kids might get from the simplicity needed to pare down complicated subjects into something that would fit the space constraints and interest levels.

Fossils Tell of Long Ago

alikifossilsbookby Aliki Brandenberg

Publication Date: 1972, revised 1990.

Harper Collins Publishers. ISBN: 978-0-06-4455093-5

AR Book Level: 3.6

Fossils Tell of Long Ago endeavors to explain what fossils are, how they form, and what they can tell us. In a quick 32 pages, Aliki provides a wealth of information well written for the intended reading level of early elementary kids.

Fossils starts off describing what fossils are and how they are formed. The description of the fossilization process is simplistic and doesn’t get into the microbes precipitating minerals around the bones during decomposition, but that was not known when the book was written and the description in the book is sufficiently accurate for the level of reader at which the book is aimed. I do like the use of the famous Xiphactinus fossil as the lead example as it is a fascinating fossil in its own right and thus a good fossil with which to hook readers. Aliki’s description of coal as a fossil is great. She does a good job of introducing different types of fossils, even including different pieces of information that may be gleaned from fossil footprints.alikifossilsbook2

Aliki then goes on to talk about mammoths in ice, amber, and how fossils can tell us about the environments when the rocks were deposited, introducing many more types of fossils along the way. She ends the section by reinforcing the utility of fossils to tell us about past environments and organisms that no longer exist, even putting in a plug for museums.

The book ends with showing how to make your own fossil track and thoughts about how people in the future may interpret it. Best of all, she ends on a positive, encouraging note that anyone can find fossils, even the kid reading the book, and discover something no one else in the world knows. And that is a powerful motivator.

All in all, the Fossils book stands up very well and can still be recommended as a great book for kids.

Dinosaur Bones

alikidinosaurbonesby Aliki Brandenberg

Publication Date: 1988 (Amazon lists the publication date as 1990, which differs from what is printed in the book).

Harper Collins Publishers, ISBN: 978-0-06-445077-5.

AR Book level: 3.7

“Dinosaur Bones” tells about the early history of the study of dinosaurs and briefly discusses dinosaurs and the world of the Mesozoic. This book does not hold up quite as well as the “Fossils” book and shows its age by being out-of-date in some places, but is still reasonably accurate a good read for young kids. It provides an interesting glimpse at the beginnings of the modern studies of dinosaurs (dinosaur bones have been found for millenia, but modern scientific study is much more recent) and a very brief introduction to dinosaurs and their world.

This book, like almost every other book, has a European bias. On the very first page, it says the Dr. Robert Plot was the first person to describe a dinosaur bone in 1676. He had no idea what it was and he described it as possibly a giant human thigh bone or some other such animal. He was hardly the first to find dinosaur fossils and try to describe them though. Native Americans, ancient Greeks, and many others found them far earlier. They just did not recognize them as dinosaurs. Fossil Legends of the First Americans and The First Fossil Hunters:Paleontology in Greek and Roman Times, both by Adrienne Mayor, are filled with accounts of early fossil hunters.

alikidinobones2The book begins by describing how she was introduced to dinosaurs and her curiosity about how scientists know what we do about past life, which she begins to answer by talking about people finding fossils. The book provides an excellent short history of the early scientific study of dinosaurs by Europeans, hitting all the famous highlights. The best part of this section is her emphasis on early ideas changing with new fossils and new data. She presents dinosaur paleontology as a dynamic process, with ideas being revisited and revised in the face of new evidence, which is a great thing to put into a book for kids.

The book then delves into the world of the dinosaurs, showing that the world was much different than it is today. I like that this was included and I realize there were space limitations, but I have a small problem with this section. The Mesozoic Era, what is commonly known as the time of the dinosaurs, lasted for over 200 million years. That is a huge time. In general, the description of the continents being joined together into one land mass was accurate for a good bit of that time, but it broke up during the Mesozoic,which had important effects on the evolution of the dinosaurs. The temperatures were also only warm everywhere, as stated in the book, if one considered temperatures warmer than current “warm.” Neither the Arctic nor Antarctic were covered in glaciers, but it was still cold enough to snow and reach frigid temperatures at night in the poles. Basically, it is not possible to compress the diversity of climate and landforms of 200 million years across the entire world into two pages and six sentences. But given that constraint, she did the best that could be done. At the very least, she presented the concept of great changes in the globe over great expanses of time, which is a substantial achievement for a book aimed at elementary kids.

Too complicated for a book meant for young kids, but  shows why not indicating there are other ways to tell time is misleading. Talkorigins.org.

Too complicated for a book meant for young kids, but shows why not indicating there are other ways to tell time is misleading. Talkorigins.org.

Following this section are two pages describing how fossils are formed and geologic time. She mentions the important concept of dinosaurs evolving. For the space available and the intended audience, the book does remarkably well. For the purpose of just introducing the concepts to kids, they are handled succinctly and clearly. The biggest place where it falls down is saying that scientists tell time by looking at the order of the fossils. This is indeed one way, but if that were the ONLY way, it would be a circular argument. You can’t use the fossils to date the rocks and the rocks to date the fossils at the same time without additional evidence. This method also only provides relative dating, there is no way to really tell how old the rocks and fossils are this way, only the order they were laid down. There are some rocks though, such as ancient lava flows or ash beds, for which we can get absolute dates using radiometric techniques. Between the two dating methods and comparing rock units from different areas to each other, we can get reliable dates for all the rock layers. Having said that, the major geologic time units were devised by looking at the order of fossils. It was only later that we learned how to provide the absolute dates, which told us how old the rocks really were. I would have preferred a simple change of wording to say that finding fossils is ONE of the methods scientists use to tell time and not make it look like it is the only way. The change may not look like much, but it really does make a big difference and many kids will pick up on the distinction so long as adults don’t give them misinformation.

The final few pages describe the history of the dinosaurs in a few sentences. The Triassic Period is done well for the allotted three sentences and the illustrations provide examples of some of the dinosaurs. The only problem here is the description of Heterodontosaurus, which is out of date (for cool information on this unusual animal, go here and here… no, really, check it out).

The Jurassic Period is a bit problematic in that it has the giant, long-necked sauropods tromping around what look to be swamps and dragging their tails, which is no longer considered accurate. Interstingly, all the carnivores are shown in dynamic, tails-up poses. The Cretaceous Period starts with saying “dinosaurs had taken over.” Dinosaurs were dominant throughout the Jurassic Period, long before the Cretaceous. The dinosaurs are also drawn too much in the old, upright positions. More than any other page, this one looks like a throwback to an earlier artistic era. In the entire section, the dinosaurs are drawn very simply and generically, despite the fact that they are named with specific names.

The final page starts with “Then suddenly, they all died out. No one knows why.” This is followed by several things scientists don’t know about dinosaurs. By and large, it is true, but we have made great progress and can now provide at least partial answers to all of them now. We now have some very good ideas about why they died out. There is also considerable debate about how “suddenly” it was. Most notably, dinosaurs didn’t all die out, just most of them. Birds are directly descended from the Mesozoic dinosaurs and are the most diverse group of vertebrates that live on land. Scientists are also making strides to answer the final questions the book states about their colors, what sounds they made, and their metabolism.  While there are still many gaps, we have made much progress on those questions. As a result, I would recommend that anyone reading this book to kids mention how old the book is and that a lot of work has been done since then to find answers to those questions, but there is still much more to do.

Not ALL dinosaurs died out.

Not ALL dinosaurs died out.

 

Next time, I will review Digging Up Dinosaurs and Dinosaurs are Different. When my kids were in preschool, I read them Digging Up Dinosaurs several times. Stay tuned.

 

3D: It’s Not Just for Movie Theaters

Jim Lane is talking about something that has been on the mind of a lot of education researchers lately. If you read much in the way of education literature at all, I am sure you will have run across many a discussion of how to improve learning by engaging the students with materials they find interesting and challenging them to solve relevant problems in a creative manner. Doing that means moving beyond the simple worksheets and memorization. It means using the newly available tools to bring the material to life and having the students work on, as one of Mr. Lane’s students called it, the edge of science.

Some of those new tools are in the realm of 3D scanning and modelling. This has allowed many museums and researchers to put some of their work online in a way that allows much more interaction than simple photos. You can, for instance, examine the head of a 2,200-year-old Chinese terracotta warrior housed at the Emperor Qin Shi Huang’s Mausoleum Site Museum or skeletons in an underwater cave from the comfort of your own home. This has great benefits for conservation and research, allowing digital preservation of fragile artifacts and researchers from all over the world to view the objects without having to spend the money to physically examine them. Much of the time, researchers will still want to see the real thing, but there are numerous studies that can be done with only the scanned images. There is even some research that can only be done on the scanned items, making the scans in a way, more important than the item itself. More to the point here, 3D scanning also opens up the object to viewing by people the world over, the vast majority of whom will never have the chance to visit the museum and see the real item.

So where can you see some of these items? There are several places on the net you can go. Here we will focus on those useful for evolutionary topics, such as fossils and anatomy (comparative anatomy with modern organisms is the heart of paleontological research). Many of the sites allow you to download the scans and print them out if you have access to a 3D printer, which are becoming increasingly common as the prices drop down to the point many individuals can buy their own and schools are starting to make them available to their students. Be warned, interactive 3D elements generally take a lot of graphics computation, so try to limit any other graphics you have up, i.e. close other browser windows, don’t try running a game in the background, the general rules of using a program with a lot of graphics. But as long as you have an up-to-date browser with Quicktime and Java, most computers these days should be able to handle it just fine (although a warning about Java, the security updates in the past year or so have made the more recent versions of java incompatible with earlier versions, so unless the developer for the site has updated their program, it may not work).

The following sites are in no particular order, so with that in mind, the first place on this list you might want to visit is Smithsonian X 3D, a website the Smithsonian recently put up showcasing objects from their collection they have scanned. At the moment, there is not a lot, but the site is new and they will be adding much more as they go along, so be sure to check back regularly. Right now, you can see 3D images of whale fossils, a mammoth, a blue crab, an orchid, a bee, and several other historical objects. Included in the collection is a scan of President Obama, the first ever 3D Presidential portrait. The basic 3D viewer is easy to use, although a few of the more advanced controls are not altogether intuitive. The website provides a brief description of each item, along with articles and videos on some of the items and the process of scanning them, including a page for educators on the use of the objects in the classroom. The Smithsonian also has more 3D collections on their human origins site. You might think that they would only have human fossils, but they have much more. You can certainly find hominid fossils, but along with them are numerous primates from Aye-Ayes to gorillas, and a large variety of other animals, from bears and cheetahs to komodo dragons and vultures. While you are there, you can a diverse array of information on human evolution, including teacher guides, lesson plans, multimedia, current research, everything you need to teach a human origins unit.

Another place you will want to check out is the Visual Interactive Anatomy pages by Dr. Lawrence Witmer at Ohio University. He and his students spend a lot of time scanning fossils and modern animals using a medical CT scanner at nearby O’Bleness Hospital or a micro-CT scanner on campus. They have put together several pages that illustrate the anatomy of several modern animals, including an opossum and the heads of a human, rhino, iguana, alligator hatchling, and ostrich. They have also collaborated with Dr. Casey Holliday on an adult alligator. The adult alligator page even has individual pages for every bone in the skull. On these pages, you will find interactive 3D pdfs and videos of the scans and reconstructions, which have a variety of structures labeled, identifying the bones, brain cavity, nasal passages, etc. In addition, you will find news and behind the scenes excerpts, and links to the published research on the specimens. On the 3D Visualizations page, you will find similar movies and 3D pdfs for a variety of dinosaurs (including Tyrannosaurus rex, Majungasaurus, and Euoplocephalus, along with several birds) and mammals from the platypus to deer to Archaeotherium, one of the group of animals often called “terror pigs”.

A website that is sure to grow is the NIH 3D Print Exchange. This site allows people to share their own 3D files for other people to download and use. The website focuses on biomedical applications, but currently you can find a variety of brains, bones, molecules, DIY lab equipment, and more. The more part I am sure will grow as people explore the site and add their own models. You can also find tutorials for making your own 3D models using 3D visualization software, and links to open source software such as Blender, FreeCAD, and Google Sketchup, as well as 3D printing services such as i.materialize and Makexyz and others.

Digimorph, or more properly Digital Morphology, a National Science Foundation Digital Library, is a site run by the CT facility at the University of Texas at Austin, one of the premier CT facilities in the country and the primary place American paleontologists go to get their fossils scanned. Digimorph provides access to these scans for the public and researchers the world over. On this site, you can find videos of scans and 3D reconstructions, some of which can be downloaded for 3D printing, for hundreds of animals, including a variety of avian and non-avian dinosaurs, along with extinct and modern species of mammals, reptiles, amphibians, fish, and even plants, coral,  crustaceans and other invertebrates. Along with the scans and 3D reconstructions, you can find descriptions of each specimen, a bibliography of research published on them, and links to useful sites for software, information on CT scanning, and other related sites. The downside to the site is they provide nothing specific for educators and the specimens that have downloadable 3D renderings are a small fraction of the total specimens available in video form, and none of them of the dinosaurs, which are only available as video animations. Nevertheless, for sheer quantity of 3D images for a diversity of animals, there is no place better.

The final site on the list is swiftly becoming the place to go for virtual fossils.GB3D Type Fossils Online project, or simply GB3D, is a website run by the British Geological Survey, Amgueddfa Cymru (National Museum of Wales), Oxford University Museum of Natural History, and the Sedgwick Museum of Earth Sciences. As the name suggests, the site is a repository for information of “type” fossils. If you don’t know what a “type” is, they have a handy guide explaining the different types. In this case, they aren’t talking about what kind of fossil it is, but things like holotypes, fossils designated in the original description of the fossil, which all others are compared to, which make them very important to scientists studying those kinds of fossils. If you want to see United Kingdom fossils, this is the place to go. They have hundreds of fossils in 3D and hundreds more in 2D. On this site, you will find a great diversity of plants and animals with high quality photographs, many of them also have stereophotos (get your 3D glasses with those red and blue lenses) and 3D models. In addition, you will find information about the fossil, such as what it is, when and where it was collected, how old it is, and contact information for the institution that holds the fossil itself. They also have a page describing the more commonly found fossils, all of which happen to be various invertebrates or fish. You will also find free programs used to view and work with 3D images you can download. They have available MeshLab, SPIERSview, and Adobe 3D Pdf Reader. Finally, you will also find links to a variety of educational resources for primary and secondary schools, universities, and the public.

Hang gliding in the Oauchita Mtns. Photo by www.mena-ark.com

Hang gliding in the Oauchita Mtns. Photo by http://www.mena-ark.com

If you want to inspire people to learn, you have to bring them right up to the edge of that knowledge cliff so they can peer over it at the wondrous space beyond, exposing them to the unknown in all its glorious mystery. Help them understand the foundations of the cliff, teach them how to build their own wings, and then push them off that cliff so they can soar into uncharted regions. When they return, they will have a better grasp of how the cliff is formed and what its boundaries are. They just might also find that cliff sticking out a little farther than when they flew off it. And when they do, you won’t have to push them, they will leap on their own. Of course, you will then have another problem: keeping up with your students. So keep your own wings in good repair. I do hope I have helped you build your wings a little stronger. If you know of any other sites that may be of use, please let us know in the comments section.

I will let Dr. Witmer finish this out and let him explain a bit about his projects and why approaches like this, particularly with dinosaurs, are useful educational tools.

 

Forum Friday, October 18 Edition

eswLogoVertical2013_smallTime for another Forum Friday! As always, please leave comments about what you liked and what you would like to see more about. What did you think about our stories? Do you have a book or show you want reviewed? Have any resources you would like to see discussed? Have you made an interactive or other resource that you think might be beneficial to others? Let us know.

In the meantime, we have discussed different maps showing the world through geologic time (including some great apps) and ways of showing the tree of life.

On Facebook we celebrated National Fossil Day and Earth Science Week, looking at fossilized arthropod brains, new skulls of Homo erectus and what that means to our understanding of human evolution, how cartilage helped dinosaurs get so big, and learned about the origin of flowering plants. We learned a website letting you make your own geologic time chart. We found a great video discussing what phylogenetic trees are and how to interpret them.

Going along with Earth Science Week, we found special Earth Science Week resources and a STEM Student Research Handbook put out by the NSTA, as well as resources available at Scitable. We discussed the pros and cons of the NGSS and the benefits of preschool education.

We learned about unusual deep sea creatures off the East Coast, more ways to tell moths and butterflies apart, how Black Skimmer birds can skim, and how the arapaima’s armor protects them from piranha. We saw how color evolved and its role in mimicry, how hands came before bipedalism, and how epigenetics affects evolution (it’s not just about mutations).

It’s your turn. What do you want to talk about?

Time Enough to Evolve

Time. My day job has kept me extraordinarily busy and away from paleoaerie for a while, thus the lack of new posts here recently, so I thought now would be a good time to discuss temporal issues.  Fortunately, things have calmed down a bit and I can get back to working on evolving the website. Speaking of which, it is time I got started.

Time is a subject about which much has been written, especially about our perceptions of time. One of the difficulties some people have with evolution is they don’t see how small changes in a population could lead to the diversity of life we see. They read about small changes in bacteria or they hear about how the average height and longevity of people have changed in the past few decades. They understand that a wide variety of dogs have been created through artificial breeding. But, the dog is still a dog, the bacterium is still a bacterium, people have not changed in their personal experience.

Unfortunately, they do not see how their personal experience misleads them. To them, the world is essentially unchanging. While human culture may change, the mountains do not move and species do not change. It is a common human tendency to assume that whatever is now has been and will always be. However, while we may think of hundreds of years as ancient history and thousands of years as vast swaths of time, they are a tiny speck of how long evolution has been altering life on this planet.

So how does one get people to comprehend the incomprehensibly vast time frames we are talking about? People have tried several ways. One could always simply show them the geologic time scale.

Image

This is the standard geologic time scale used by professionals the world over, put out by the Geological Society of America. But to most people, this doesn’t really help. It is words and numbers and humans are just not that good at really getting a gut level understanding of figures like this. So many people have come up with a variety of metaphors. A common metaphor is compressing the age of the universe into a single year, a la the Cosmic Calendar, as popularized by Carl Sagan and expanded upon nicely by Arif Babul at the University of Victoria.

cosmiccalendarbabulThe idea of condensing all of time into a calendar can be re-envisioned as a clock. If we extend the circular motif to three dimensions, we find another popular image in that of a great spiral of life.

Geological_time_spiralWe could  also think of time as distance. If, for instance, we decided to get in our car at the Jacksonville, FL airport and drive west and we thought of each mile being 1,000,000 years, we would have to drive to Fairbanks, AL to reach the whole age of the earth. All of human history would be passed by in less than two standard car lengths. An hour into your drive you would pass the asteroid marking the end of the Cretaceous Period and the demise of the non-avian dinosaurs. You would barely be into Tennessee before you passed the Cambrian Explosion over 500,000,000 years ago. By the time you got back to the origins of life, you would be entering the Yukon territories in Canada.

geologictimedrivingBut these are all static images. Perhaps you would prefer a more interactive approach, such as this interactive timeline or perhaps this one.

chronozoom670

Perhaps you would prefer an interactive in which time was expressed in terms of size.

prezitimeThese are just a few of the ways that time spans can be visualized. Are you looking for something you can bring into a classroom that the students can touch and experiment with? Try having them build a timeline of their own. What is your favorite? Do you have other ideas?