Home » Mystery Monday (Page 2)
Category Archives: Mystery Monday
Fossil Friday, A Whale of a Time
Were you able to figure out what the mystery fossil this week was?
This is a vertebra, as I am sure most people could readily see. The two centra, the body of the vertebra, are flat to even a little concave, indicating an aquatic creature.
Here is a little more, showing pieces of the jaw.
Here is a picture by Karen Karr showing what the animal may have looked like when alive.
This is a Basilosaurus. The name means “king lizard”. It is an odd misnomer, though, because it is not a reptile at all. It is in fact a true whale, one of the first to have flippers rather than legs. Fossils of Basilosaurus have mostly been found in Alabama and a few other places in the southern United States, but the partial skeleton of one was found near Crowley’s Ridge in Arkansas.
An unexpected museum trip has presented itself to me, so this post will be short, but come back Monday for a more detailed discussion of Basilosaurus, the “bone crusher”.
Mystery Monday, Not a Fish Story
I have a new mystery fossil for you this week. I thought I would put a new fossil off until next week, but considering that next week is Spring Break for many around here and that new, cool research has been published on this animal recently, I decided to go ahead and put it out there.
This is a drawing of the vertebra made by Sir Richard Owen, one of the greatest minds in paleontological taxonomy of the 19th century. The fossil had been identified as one thing, but Dr. Owen provided a thorough and convincing discussion of why that interpretation was wrong. The name given to it was rather humorously coincidental, considering what it turned out to be. It is difficult to identify isolated vertebrae, so I’ll give you another drawing of the same animal, but different parts.
This image is by the person who originally described the earlier vertebra, but also includes a few more pieces.
See if you can take the images, along with my clues, and figure out what this is. We’ll see if anyone can do better than the original descriptor.
Mystery Revealed: A Common Coral in Arkansas
It is the unfortunate fact of life that volunteer efforts are all too often derailed by other pursuits. Such is the case for last week’s Mystery Monday fossil. Nevertheless, the answer shall be forthcoming. If you have been paying attention to the Facebook feed, you will know that the fossil presented last Monday was identified. Were you able to figure it out?
This is a large, very well preserved piece of tabulate coral. Corals are colonial species that are very important in modern ecosystems. A fourth of all ocean species live within these reefs. They form the backbone of reefs that are among the richer areas of biodiversity on the planet. Billions of dollars each year are pumped into local economies across the world.
What we think of as coral is mostly the calcareous homes they form, within which the animals live. The actual animal is a tiny animal in the Phylum Cnidaria. Cnidarians are soft-bodied animals, the best known of which are the jellyfish and sea anemone. Cnidarians take two general forms. Medusae are free-floating forms like the jellyfish. Coral and sea anemones are polyps, mostly stationary, or “sessile”, forms that remain in place their entire lives. Corals, like other cnidarians, are predatory, catching their prey with tentacles armed with nematocysts, cells containing potent poisons to immobilize or kill their prey. Of course, since corals are tiny creatures themselves, they prey on even tinier prey. The tentacles surround an opening which serves as both mouth and anus, basically making the animal a living, carnivorous sack. This is not the only way corals get food though. Most modern corals also have a symbiotic relationship with single-celled algae called zooxanthellae, which provide essential nutrients for the coral in which they live. Unfortunately, when the coral gets too stressed from increasing temperatures or other causes, they tend to respond by evicting the zooxanthellae. Because the zooxanthellae are what gives corals their bright colors, this is known as coral bleaching.
While there are several different kinds of coral, most of the coral people are familiar with are the stony corals, or Scleractinia, because these are the ones that build the reefs. They are part of the larger group of corals known as Hexacorallia (at least, if you are talking to modern biologists, paleontologists often restrict Hexacorallia to scleractinians), known for often having the individual coral homes partially divided with six partitions, or septa (although you may be hard pressed to identify the three axes forming the six partitions even if they are present in that number).
The scleractinians have only been around since the Mesozoic however. They did not build the coral reefs of the later Paleozoic Era. That distinction goes to the rugose, or horn, corals and the tabulate corals, such as the example above. Tabulate corals are known for the corals being aligned in horizontal stacks. The image above should really be rotated 90 degrees to get the life position. This stacking always reminds me of apartment building, particularly cheap tenement housing, or wire mesh. According to phylogenetic studies on modern corals, it appears that the earliest scleractinians did not have zooanthellae, the symbiotic relationship evolving later, so it seems likely tabulate corals didn’t either. Tabulate corals appeared in the Ordovician Period roughly 450 million years ago. They started dying out in the Permian and finally succumbed to extinction at the end of the Permian period 252 million years ago, along with most other life on the planet. However, it is a bit misleading to say they went extinct. It is thought that the modern scleractinians that arose in the early Triassic are descended from tabulate corals, so they appear to have evolved, rather than just died out.
If you want to find corals such as this in Arkansas, one need only travel anywhere in most of the northern part of the state. The Ozark Mountains are predominantly formed from shallow marine Paleozoic rocks. Anywhere you find limestone in the Ozarks, keep your eyes peeled for samples of this type of coral. They are invertebrates, so as long as you are not collecting in a National Forest or private property without the owner’s permission, you are free to collect them.
Fossil Friday. Soak up some information
Were you able to guess what the image was? It is a common animal almost everyone has at least a synthetic version of in their home. Yet they make terrible fossils.
Yes, this is a sponge. It is a small one, but typical for a fossil of a sponge. If they preserve well, they look like little balls, or pancakes (the squished ball sponge), or cylinders. All in all, visually very simple.

“Porifera body structures 01” by Philcha – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons – http://commons.wikimedia.org/wiki/File:Porifera_body_structures_01.png#mediaviewer/File:Porifera_body_structures_01.png
Sponges belong to the the group called Porifera, so named because they have a lot of pores through which water flows through. Even though they may superficially look like some colonial organisms, they are true multicellular animals. Sponges have no true organs, or even tissues, but they do have specialized cells to handle various functions, such as reproduction, producing the materials needed for growing, and cells that act as a primitive immune system. The body organization is about as simple as you can get. Water flows through the pores into a central chamber, which has an opening at the top for water to flow out. As the water flows through, the sponge cells filter out nutrients, generally consisting of bacteria, plankton, and the occasional small animal, and excrete waste products.
Traditionally, sponges have been considered the most primitive of metozoans, the group comprising multicellular animals. There has been some research indicating that comb jellies are more primitive, but that work has been disputed by new research.

“92 ANM Glass sponge 2” by Randolph Femmer – National Biological Information Infrastructure 6259. Licensed under Public Domain via Wikimedia Commons – http://commons.wikimedia.org/wiki/File:92_ANM_Glass_sponge_2.jpg#mediaviewer/File:92_ANM_Glass_sponge_2.jpg
Sponges are normally divided into three different types. Demospongia is the largest of the three (although this may be because it includes sponges that may not be as closely related as typically thought). They form a “skeleton” out of small, pointed cylinders called spicules, made from either silica or a protein called “spongin”. The glass sponges, or Hexactinellid sponges, also make silica spicules, but these spicules are noticeably different from the demosponges. The third group of sponges make their spicules out of calcium carbonate and so are known as calcareous sponges. For more information on sponges, the wikipedia article is surprisingly good, so I will not belabor the points here.
It is these spicules that make fossils of sponges so problematic. When the sponges die, the soft tissues decay away and the spicules become little more than sand. Finding an intact fossil sponge is relatively rare. Thus, the vast majority of research done on fossil sponges is done through painstaking microscopic work on the spicules.
The fossil record of sponges goes back possibly as far back as 750 million years, although they do not become common until about 540 million years in the Cambrian and have been found all over the world. In Arkansas, the record of sponges is rather poor, mostly because very few people have worked on them and no one is looking for them. There are currently only four named fossil sponges and a few indeterminate sponge spicules.

Boring sponge, Cliona swpp. Photograph Forest Rohwer, San Diego State University. http://www.sms.si.edu/irlspec/Cliona_spp.htm
Demospongia is represented by three species. Haplistion sphaericum and Virgaspongia ichnata are demosponges found in the Bloyd Formation in Washington County. The Bloyd Formation is a Pennsylvanian aged formation found in the Ozark Mountains, a fossiliferous unit consisting of silty shale to massive sandstones, representing a relatively shallow marine environment with fluctuating sediment influx. Cliona, is a Late Cretaceous demosponge found in the Arkadelphia marl Formation in Hempstead County. Cliona is known as a boring sponge, not because it is uninteresting, but because it has a habit of boring holes into shells. This formation is mostly a limey mud best known for its mosasaurs, but also has a diverse assemblage of marine fossils. Stioderma hadra is the long glass sponge known from Arkansas and was also found in the Bloyd Formation.
The First Mystery Monday of 2015
Time for the first mystery fossil for the year. Can you figure out what this humble little sphere is? Specimens of these little fellows have been around for over 500 million years, but I bet you have a reasonable facsimile in your house.
Leave your thoughts in the comments section and come back Friday for the answer.
Mr. Ed’s Fossil Friday
Next week is Christmas, Hanukkah started this week, there is Boxing Day, Yule, Kwanzaa, even Festivus and Hogswatch, not to mention the old classic Saturnalia and a whole host of others. Busy week for those wanting to celebrate. In honor of that, I came as close as Arkansas fossils allow to a well-known, traditional, seasonally-associated animal. Were you able to figure it out?
If you guessed reindeer, you were wrong. Sadly, there is no record of reindeer ever having lived in Arkansas that I can find. If there were, I would have used it. So no skeletons of Rudolph for us. The closest thing to a reindeer that has been found in Arkansas are fossils of the common white-tailed deer, which is so common in the state that it not infrequently becomes one with motor vehicles, much to the dismay of both deer and driver.
So what could this be besides a deer, reined or not? Reindeer are in the genus Rangifer, which are in the family Cervidae, along with deer. Cervids are artiodactyls, mammals best known for having cloven hoofs, thus the term “even-toed ungulate.” Unfortunately, Arkansas is not really known for artiodactyls either, other than pigs, and somehow, pigs did not seem an appropriate holiday animal. So what to do?
There is another animal that is often associated with the holidays, especially in the Christmas tradition, that being the donkey. I am sure you’ve heard of the story of Joseph leading a donkey upon which rode Mary to Bethelem and what Nativity scene is complete without a donkey? Donkeys, of course, are in the same genus as the horse, Equus, which are perissodactyls, the odd-toed ungulates. So allow me to introduce you to Scott’s Horse, Equus scotti, named after the paleontologist William Berryman Scott, a Princeton paleontologist known for his work on Cenozoic mammals.
Almost everyone is familiar with horses today. They stand as an iconic symbol of the Wild West, an integral image of the American cowboy and the Native Americans that roamed through the plains. Horses are also one of the most commonly used examples of evolution, with the line from Hyracotherium to Equus in virtually every evolution textbook ever written. All the discussions talk about how they got bigger and lost most of their toes as adaptations for running, and grew higher-crowned teeth to deal with the tough grasses they started to eat that replaced the softer, lush forest plants.

McFadden, Bruce. 2005. “Fossil Horses – Evidence of Evolution.” Science Vol. 307. no. 5716, pp. 1728 – 1730
What is less well known outside of those who study evolution and paleontology is that this process was not a straight chain from tiny, forest-dwelling horse ancestor to the modern horse. The horse lineage diversified, evolving into multiple niches. This shouldn’t really be too much of a surprise, considering the diversity seen in horses today, with everything from burros and Shetland ponies to Clydesdales and zebras. Most of them died out before the modern horses we see today arrived. Scott’s horse was one of these extinct forms.
Another thing that is not well known outside of paleontologists is that the modern horse originated in North America, but are not the ones living here today. Horses evolved during the Pliocene, five million years ago. Adaptations allowed them to survive the change from forests to more open, grassy plains, driving their evolution. From North America, they spread into South America through Central America and into Asia and Europe across the Bering land bridge. The Bering Sea Straits were dry at this time because the ice ages during the Pleistocene lowered water levels, allowing passage between the continents. Horses, along with many other animals, like mammoths and camels (also originally American), crossed through the land bridge to populate lands on either side.
At the end of the ice ages about 11,000 years ago, every species of the American horse, including E. scotti, died out, along with all of the other megafauna. Horses continued to thrive in South America and Eurasia, but for over 10,000 years, their North American homeland was barren of horses. It was not until the Spanish conquistadors brought them back that horses once again thrived in North America. Thus, we can thank the Spanish for bringing back a quintessentially American product.
Mystery Monday, Happy Holidays
This will be the last mystery fossil for the year. After this, I, like hopefully everyone else, will be enjoying the holidays. Arkansas does not have any fossils that are terribly well associated with any of the late December holidays, but I got as close to one as I could. It is closely related to animals living here today, but it died out long before its modern relative was reintroduced. Put your guesses in the comments section and check back Friday for the answer.
















