Home » Posts tagged 'Arkansas' (Page 2)

Tag Archives: Arkansas

Marine Paleo Animal Fest, Day 3

saratogachalkMonday was a goniopholid crocodilian. Tuesday was mosasaurs, the largest of the marine predators. For day 3, we’re going to the other end of the scale.

What is a picture of a rock outcrop doing here? This is a picture of the Saratoga Chalk, courtesy of the Arkansas Geological Survey. Look at it this way, and it is tons of chalk, the same that they used to make for blackboards when they used the real thing.

But look at it under a microscope and you open up an entirely new world. For chalk is not just a rock. It is a rock made of trillions of shells of microscopic organisms that live in the oceans.

Two kinds of microorganisms make up most of the chalk. The Saratoga is primarily noted for its abundance of foraminifera, (forams for short) one-celled organisms that form shells, or tests, out of minerals dissolved in the sea water. The ones that make up chalk and limestone form theirs out of calcium carbonate. It is unclear what they are related to, but one thing is clear. They have developed a huge diversity in their over 500 million years of existence.


Pacific forams. Smithsonian,  Pamela Haddock, University of South Florida

I find forams fascinating because of their wonderful diversity. Here is another picture posted on the blog “Letters from Gondwana.” The article is a nice description of forams if you want more information on them.


The other group that is commonly found in chalk is called the coccolithophores. These are very tiny, once-celled plants found in the ocean and make up one of the largest groups of phytoplankton. They also make shells of calcium carbonate, but instead of a shell like the forams, they create their home with a few dozen intricately formed scales.

The coccolithophore Gephyrocapsa oceanica. Wikipedia.Gephyrocapsa_oceanica_color.jpg

When the cells die, the scales scatter and become tiny grains of calcium carbonate which, when piled up on the ocean floor with all the other debris from the oceans, can form those particles of chalk that you used to clean off the blackboard.

Both of these groups prefer shallow, warm seas. Go to the Bahamas or the Persian Gulf and you will get an idea of the environments that are admirably suited to making modern day chalk, as well as getting a good idea of what Arkansas was like 100 million years ago.



Day 2 of marine paleo-animals: Mosasaurs

Continuing our celebration of marine animals of the Cretaceous found in Arkansas, here is a picture of a mosasaur. It is from the Dallas (Perot) Museum of Nature and Science. They have a great display of several different mosasaurs. You can also see one on display at the natural history museum located at the University of Texas at Austin.


Heath mosasaur, Dallas Museum of Nature and Science

Heath mosasaur, Dallas Museum of Nature and Science

Mosasaurs were the apex predators of their time, which was in the Late Cretaceous. Tyrannosaurs may have ruled the land, but mosasaurs ruled the seas. The first mosasaurs appeared in the early Cretaceous, but by the end, they dominated the oceans. Unfortunately for them, they only had a 20 million year or so run at the top before the mass extinction at the end of the Mesozoic Era wiped them out along with the dinosaurs.

Mosasaur in UT-Austin museum

Mosasaur in UT-Austin museum

Mosasaurs were not related to dinosaurs, other than also being reptiles. They were most closely related to the group of lizards that include the monitor lizards, such as the Nile monitor and Komodo Dragon. They were fast predators with a powerful tail to move them through the water. Mosasaurs were so adapted to the water that they bore live young and were not able to walk on land, although they did still have to surface for air like every other reptile. Recent research has found they were endothermic (warm-blooded), unlike their competitors, giving them an edge by allowing them to sustain higher activity levels. It also meant they had to eat more often, making it necessary for them to be effective hunters. Research has also indicated they were countershaded, with a lighter belly than the back, much like many sharks of today. They had a varied diet, with some species specializing in different prey, so over the whole group, they pretty much ate everything in the ocean.

Mosasaur bones have been found in many places throughout southwest Arkansas, which was covered by the Western Interior Sea during the Cretaceous. Two species have thus far been recognized. Platecarpus was fairly small, only 4-5 meters (13-16 feet), but were noted for some exceptionally preserved fossils that retained the impressions of a tail fluke, allowing paleontologists for the first time to see what their tails looked like. The other species is Mosasaurus itself, a huge predator that reached lengths of 15-18 meters (50-60 feet).



Sharks! Welcome Back to School

Welcome back to the new school year. Some of you will be excited to be back, seeing old friends, making new ones, and learning new things. Some of you will be sad to see summer end. Many of you will be doing both at once. Others of you of course aren’t in school and don’t care about it, but if you are here, you are nevertheless interested in learning cool new stuff. So it is a time for a celebration of the natural world.

Shark Week is a big summer event on the Discover Channel. It is probably their biggest viewer draw all year. Who doesn’t like learning about sharks and seeing them in all their awe-inspiring glory? Additionally, if one is keeping up with the weather, southern Louisiana is currently being deluged, with Baton Rouge and surrounding areas practically getting washed away.

So I thought this would be a good time for Paleoaerie to hold its own version of Shark Week. I can’t do a series of tv specials, so I am going to extend my Paleo Shark week over two full weeks. All this week I will be putting up short posts on marine creatures that swam in the oceans of southern Arkansas during the Cretaceous. Every day will be a new post on something that would make your swim…interesting. Next week will truly be Paleo Shark Week. Every day next week will be highlighting a different shark that would be swimming in the Cretaceous waters of southern Arkansas.

To kick things off, I will start with this creature.


This is a crocodylomorph, meaning that it is in the same group that includes crocodiles and alligators. Specifically, it is a member of the family Goniopholididae. Species in this group were, at least superficially, similar to modern crocodilians. They were semi-aquatic hunters living in marsh and swamp lands. They wouldn’t look out of place with the modern alligators swimming around Arkansas today, except that they probably couldn’t compete effectively with alligators, who are better adapted for the lifestyle than they were. They lived throughout much of the Mesozoic, from the early Jurassic to the Late Cretaceous, when the more modern forms replaced them.

Goniopholids are what is known as mesosuchians, which means “middle crocodiles”. Mesosuchians, as the name suggests, were more derived than the earliest crocodyliforms, such as the protosuchians, although less derived than modern-day crocodilians. Mesosuchians is not a formal name, but an informal and decidedly paraphyletic (i.e. not a valid cladistic grouping because it leaves out some descendants) name to designate those crocodyliform species showing the early characteristics and those that show the characteristics of the modern crocodilians. Here is a phylogenetic tree put out by Chris Brochu in 2001, showing the general relationships within the crocodylomorphs. The names on the left side of the long main line include everything from that point on, e.g. Crocodymorpha includes “sphenosuchians” and everything below it, but not the Aetosauria and above. Mesosuchians plus Eusuchia (which does include all modern groups) can correctly be called Mesoeucrocodylia, but that hardly helps us specify the group.



Simosuchus, Royal Ontario Museum.  Photo by Gordon E. Robertson.


Mesosuchians include a wide variety of animals with a large number of species. They include terrestrial  animals like the carnivorous boar croc Kaprosuchus and the herbivorous Simosuchus, as well as the more typical semi-aquatic pholidosaurs, which include the super croc Sarcosuchus, one of the largest crocodylomorphs ever, reaching almost 40 feet.

Sarcosuchus may not have been quite as big as Deinosuchus though. Deinosuchus was an alligatoroid (within the larger alligator family, but not a modern alligator), which potentially reached upwards of 40 feet, but may have been heavier set. Sarcosuchus lived in the early Cretaceous at the same time as Goniopholis in Arkansas, but lived in Africa and South America. Deinosuchus, on the other hand, lived int he Late Cretaceous right here in Arkansas. While we have no bones to prove this, we do know they lived in Texas and Mississippi, as well as many other places in the United States. The environment would have been suitable for them, so there is no reason to think they did not live here as well.

2002-01-16 15.40.23

Sarcosuchus life size model “attacking” my family.


Fossil Monday, A New Segment

Here is a new fossil for you to identify. I haven’t put up anything like it before, so you can rule out any of the usual candidates. I will put up the answer next Monday unless some early bird beats me to it. Good luck.


Fossil Friday: Stuck on the Rocky Shores

So were you able to identify our fossil this week?


This if Figure 5 from the only real publication on Arkansas fossil barnacles. I posted an articles on barnacles once before, but time grew short and I neglected to mention specifically the Arkansas ones, an egregious error on a website devoted to Arkansas fossils. So I am now correcting that with this post.

As I mentioned in the last post, barnacles are crustaceans and have been around since the Cambrian Period. They can be found throughout much of the Northwest half of the state, basically anywhere not carved out by the Mississippi river. However, other than some miscellaneous purported barnacles borings on clam shells and the like in the Ozarks and Ouachitas, there is not really any published literature on the subject.

For published information, if you really want to know about barnacles, you need to talk to Victor Zullo at the University of North Carolina, Ernest E. Russell of Mississippi State University, or Frederic Mellon. Sadly, you will find that difficult as they are all now deceased, leaving the field of Arkansas cirriped studies completely wide open to the prospective student.

In 1987, the trio published a paper detailing two new species of barnacles found in a quarry in Hot Springs County, Arkansas. The first barnacle was identified as being in the suborder Brachylepadomorpha and was named Brachylepas americana. They listed this as important as being “quite possibly the richest single accumulation of brachylepadomorph material ever encountered.” They also suggest that because of its similarity to other species in Europe that there was “unrestricted communication between these widely separated geographic regions during late Campanian time.”


Another thing I found interesting about these barnacles is where they were found. Thousands of these fossils were found in a gravel within the Brownstone Formation, dated to the Late Cretaceous, and deposited in a littoral environment. This is a high energy, near shore environment. The living representatives of this group, though, are only found near hydrothermal vents.

The other barnacle they discuss and the one which is shown in Figure 5 above is Virgiscalpellium gabbi and a subspecies V. gabbi apertus. These are only known from nine specimens however, unlike the thousands of B. americana. This seems to be a much less common species throughout its range than other barnacles.

Along with the barnacles, the trio mention the Brownstone Formation is rich in fossils of other types, including, the oyster Exogyra ponderosa, several gastropods, a sponge, brachiopod, serpelid worm, bryozoans, nannoplankton, and the odd vertebrate, such as mosasaurs, sharks, and skates.

Zullo, Victor A., Russell, Ernest E., and Mellen, Frederic F. 1987. Brachylepas Woodward and Virgiscalpellium Withers (Cirripedia) from the Upper Cretaceous of Arkansas. Journal of Paleontology. Vol. 61(1):101-111.

Holiday Fun in Arkadelphia

Wow. I can not believe that I have not posted anything here since Halloween. My New Year’s Resolution is to not let that happen again. I have no excuses. But as was said on the Syfy show The Expanse, “We can not change the things we’ve done, but we can all change the things we do next.”

For this post, I want to relate the trip I took to Arkadelphia just before the Christmas holidays to visit the Goza Middle School on the invitation of one of their science teachers, Trent Smith. That trip will benefit many people in the future, and it also provided a chance to see some Arkansas geology and paleontology that may prove interesting to fossil enthusiasts.

The fossils that started this off. Picture by Trent Smith

The fossils that started this off. Picture by Trent Smith

This all started with an email I got from Trent Smith, who had found some fossils he wanted help identifying. After looking at the attached photo, I tentatively identified most of them as specimens of Exogyra ponderosa, a common oyster from the Cretaceous Period. There also appeared to be a goniatite ammonoid, a Cretaceous Period cephalopod, or squid relative. I could not be sure just from looking at the pictures, so I offered coming down to take a look at them in person. Trent was amenable to that and after a few emails back and forth, we arranged to not only look at his fossils, but talk to his eighth grade science class while I was there. It turned out that the school was interested in me talking to multiple classes, which all told was about 160 students. They suggested I could either give one talk to all of them at once, or I could do multiple talks to individual classes. I much prefer the smaller groups where people can get a more hands on experience with the fossils and have more opportunity for students to ask questions, so I opted to give several talks. I wound up giving seven talks, with two of the talks to combined classes. So I had the opportunity to speak with a lot of students.

When I got there, Trent helped me bring in my boxes and took me to his room to start setting up. Goza Middle School students are fortunate to have great science teachers who are passionate about science and education. Trent’s classroom fossil collection was by far the largest fossil collection I have ever seen in a public school classroom. They have a good variety of most of the invertebrate fossils that can be found in Arkansas. They also had a fabulous nautiloid ammonoid 4″ across or more. I had a shell of a modern Nautilus, a genus of the only extant ammonoids, so the students were able to compare a modern version with one over 70 million years old.

For each class, I gave a short introduction to the fossils that can be found in the state, which is much more diverse than most people realize. I also gave them a quick demonstration of the immense expanse of time we were discussing. I have a timeline that stretches eighteen feet and covers 600 million years. People are usually suitably impressed with that timeline, but when I tell them how much space our civilization represents on the timeline, they are stunned. At that scale, all of human recorded civilization is approximately the width of one human hair. Afterwards, we let the students look at the fossils I brought and ask questions. The students were more reluctant to get out of their seats and approach the front table than the younger kids I usually talk to, which I found interesting and speaks to how quickly we train our students to sit and listen without interaction. But once they got over their training, they enjoyed being able to handle the fossils and examine them close up. The students were uniformly polite and well behaved and were a pleasure to talk with. Midway through, the teachers treated me to a tasty potluck lunch.

My new favorite shirt

My new favorite shirt

If everything was left at that, it would have been a great trip and I would be happy to return, but they really went above and beyond. In addition to lunch and a small donation (I have generally not asked for payment for classroom visits in the past and as a result, getting paid for it almost never happens, but getting paid means I can go to more classes so is greatly appreciated), they provided me with even more. They gave me my first two Paleoaerie shirts, which they designed and they did a fantastic job. On the front of both shirts is a dinosaur foot that looks like the foot of Arkansaurus, the only dinosaur bones ever found in the state, and my name, Dr. Daniel. On the back of one shirt, it has the dinosaur foot with the words PALEONTOLOGY above it and DIGGING UP KNOWLEDGE below it. On the back of the second shirt, it says PALEOAERIE.ORG followed by my three statements of what guides my efforts: The universe is endlessly amazing, knowledge is useful only when it is shared, and you can’t really know something unless you understand how and why we think we know it. The shirts are going to be my uniform for future talks.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

Exogyra ponderosa (Cretaceous oysters) collected in Arkadelphia by Trent Smith.

After school was over, Trent showed me a spot he has collected fossils from on Wp Malone Road, just west of I-30. According to the Arkansas Geological Survey’s geologic map of the Arkadelphia quadrangle, the area is listed as being in the Nacatah Sand, an Upper Cretaceous formation consisting of a mix of unconsolidated sediments deposited in a nearshore marine environment. However, the marl, a limey clay, we found in the creek looked more like it came from the Marlbrook Marl, a formation that lies underneath the Nacatah and separated from it by the Saratoga Chalk formation. The Saratoga Chalk is not thick in this area, so it is quite easy to go from the Nacatah to the Marlbrook in a very short distance. In this particular locale, the Marlbrook is close by and it is likely that what we found was washed downstream to where we found it. As I recall, Trent mentioned that fossils were more common the farther upstream one went, which would support this idea. The Marlbrook Marl, when fresh, is a blue-gray lime clay, or marl, laid down in nearshore, shallow marine environments, just like the Nacatah Sand, but without the sand contribution. The upper part of the Marlbrook is also famous for being extremely fossiliferous and this site was no exception. I initially attempted to collect what I found, but very quickly realized there were so many shells that it was impossible to carry them all. The great majority of what we found were shells of Exogyra ponderosa, but the numbers would have allowed us to quickly fill a crate with specimens. We also found a few snail shells (of what type I am not sure) and a terebratulid brachiopod, but the numbers of everything else did not begin to compare with the shells of Exogyra. On other trips, Trent collected numerous Exogyra shells and gave me two boxes full of shells. Thanks to him, I will be able to supply many Arkansas classrooms with actual Arkansas Cretaceous fossils.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site.

Collection locality. Marlbrook (outlined teal-colored area) is upstream just west of collecting site. Click to enlarge.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

Poorly preserved snails and clams. Little orignal material remains, leaving only the internal molds.

This area is a nice place to collect. As long as one is on public land (or with the permission of the land owner), you can collect any of the invertebrates you want, so you can feel free to collect Exogyra shells here. But the Marlbrook also contains more than just oysters, brachiopods, and snails. It has also yielded mosasaurs and even the occasional elasmosaur. There is even the possibility that a dinosaur was washed out to sea and could be found there. So if you collect in this area and find some bones, give me a call.

Many thanks to Trent Smith and the whole of Goza Middle School, not just for your hospitality, but for living the statement of Dr. Scott the Paleontologist on Dinosaur Train: “Get outside, get into nature, and make your own discoveries.”

The Perfect Fossil for Halloween, At Least In Name

Tomorrow is Halloween, so I thought this week’s mystery fossil is particularly appropriate. Herman Diaz was able to guess that it was some sort of bovid, something along the lines of a bison. Were you able to get any closer?

Ohio Historical Society

Ohio Historical Society

This picture is indeed a bovid, although it’s not a bison. The skull cap, adorned with horns is from an animal called Bootherium bombifrons, also known as Harlan’s muskox, , woodland muskox, bonnet-headed muskox, or my personal preferred term second to the great Bootherium, the helmeted muskox.

Muskox are ungulates (hoofed animals) in the order Artiodactylia, even-toed ungulates such as pigs, deer, camels, and antelopes. Artiodactyls also include hippos and whales, which is why some people prefer the term Cetartiodactylia. Bovids are a group of artiodactyls known for having blunt snouts and unbranched horns. In addition to the ever-popular cows, they include bison, sheep, goats, antelopes, and of course, the muskox. It is a large group, with over 400 known species.

Tundra muskox. Wikipedia.

Tundra muskox. Wikipedia.

Muskox today consist of a single species, Ovibos moschatus. Muskox are commonly misunderstood to be related to oxen, which are really just cows (or more correctly, cattle, as cow technically only refers to females) that have been trained as draft animals and not a separate species at all. Muskox are really more closely related to goats than cattle. They are adapted for cold weather and live in Arctic regions of North America, Eurasia, and Greenland.

Bootherium bombifrons. Candadian Museum of Nature

Bootherium bombifrons. Candadian Museum of Nature

Bootherium, unlike its modern cousin, lived in more temperate climates. It lived throughout North America during the Pleistocene Epoch between 300,000 and 1.8 million years ago, but was most common in the southern United States. It is not a common fossil in Arkansas, but has been identified from Newton County in the northern part of the state along the Buffalo National River. Sadly, the paper referencing this find is chiefly about a cave in Maryland from 1938, which is a great indicator of a lack of decent mammalian paleontological research in Arkansas. Nevertheless, during the Pleistocene, Bootherium has been listed as the most common form of muskox in North America.

Bootherium is reported to have been taller and thinner than modern muskox, with a finer and shorter fur coat, as befitting the warmer climate. They also had large horns that were fused together across the top of the skull.

Considering that it shared a similar habitat with mastodons, which we have in a fair abundance within the state, it would be expected that there should be more evidence of them being in Arkansas. It may be that they are usually mistaken for the bones of modern cattle, which are not uncommon throughout the state. So perhaps there are more around here than we know about.

For more information on Bootherium, check out the website of the Yukon Beringia Interpretive Centre.

Mystery Monday, Halloween edition

I haven’t posted a mystery fossil this fall, much to my own disappointment. But I have the perfect specimen for this week. With Halloween this Saturday, I had to post this one. See if you can figure out what it is. Check back Friday for the answer.

Ohio Historical Society

Ohio Historical Society

I couldn’t find a picture of the Arkansas fossils, so one from Ohio will have to do.

National Fossil Day Post #2: The Most Common Fossils of Arkansas



National Fossil Day is today. The Museum of Discovery is having their second annual National Fossil Day event this Saturday. In celebration of these events, I am reviewing important fossils of Arkansas. Last post I stated my picks for the most famous fossils of Arkansas. This time I will discuss what I think are the most common fossils in particular regions of the state.

crinoidal-imo-faceIn the Ozarks, you can find an abundance of marine fossils. There are ammonoids, bryozoans, brachiopods, clams, corals, echinoids, and many others. The Pitkin limestone is so chocked full of Archimedes bryozoans that it is sometimes referred to as the Archimedes limestone. But overall, I have to go with crinoids as the most commonly found fossil in the Ozarks. Crinoids lived throughout the Paleozoic Era, making them potential finds throughout the region. They survived even up to the present day in deep marine settings, but in the Paleozoic, they lived throughout the shallow marine realm, which is where fossils are most common.

Stellar examples of crinoids in all their fossilized glory. This image and more information can be found at

Stellar examples of crinoids in all their fossilized glory. This image and more information can be found at

Known as sea lilies today due to their plant-like appearance, they are actually echinoderms, making them relatives of sea urchins and sea stars. While not common today, they were quite abundant during the Paleozoic. Most of the fossils of crinoids are of their stems, which look like stacks of circles with the centers punched out, sort of like flattened rings. But occasionally, you can find the tops of the crinoids with the body (called a calyx) and the arms still intact. These are rare because, like all echinoderms, the body is made of plates that fall apart into indistinguishable fragments shortly after death.

Graptolites from the Womble shale.

Graptolites from the Womble shale.

DSC_1582You will not find many fossils in the Ouachitas, but two types of fossils are commonly found there, conodonts and graptolites. Conodonts are the toothy remains of the earliest vertebrates. Unfortunately, you can place several of them on the head of a pin, so unless you are looking at rocks under a microscope, you probably won’t see them. That leaves graptolites, which can be found in several places fairly easily. Unless you know what you are looking at, they can be easy to miss. On black shale, they often appear as pencil scratches that are easy to overlook. But look closely and you will see that many of them look like tiny saw blades. These are what remains of animals we call today pterobranchs. These animals are the closest an animal can get to being a chordate, the group that includes vertebrates, without actually being one. So the Ouachita mountains have fossils that bracket that hugely important transition from spineless to having a backbone.

exogyraFor the third choice, one could always argue for shark teeth, which are commonly found in southwest Arkansas, but can be found most anywhere in the state. But if we limit our discussion to the southwest part of the state, the easiest to find on the basis of quantity and size I think has to go to Exogyra ponderosa. These are Cretaceous aged oysters known for their thick shells adorned with a curled hornlike shape. They are big, sturdy, and can be found by the thousands. One can only imagine that the Cretaceous was a great time to be an oyster. At that time, southwest Arkansas was beachfront property. with lots of shoreline and shallow marine deposits of sand, shale, limestone, and the famous Cretaceous chalk deposits. Dinosaurs walked along the beach, marine reptiles like mosasaurs and elasmosaurs plied the waters, along with sharks and fish of all kinds. And between them lay mountains of oysters.

You may notice that I left out pretty much all of eastern Arkansas. That is because that region of the state is covered in fairly recent Mississippi river sediment, so you don’t find that many fossils in that part of the state. Some have been found, such as the Hazen mammoth, mastodons, sea snakes, and the occasional giant ground sloth or whale, but the fossils are few and far between. So while they have several fascinating fossils, they aren’t going to show up on anyone’s list of commonly found fossils.

So those are my choices. Do you have other suggestions?

National Fossil Day Post #1: The Most Famous Fossils of Arkansas




This week is Earth Science Week, with National Fossil Day on Wednesday. The Museum of Discovery is holding its second annual National Fossil Day event on Saturday, the 17th, between 10 am and 3 pm. So in honor of the week and in preparation for the museum event on Saturday, I thought I would briefly talk about what I consider the three most famous fossils found in Arkansas. You may notice this list is exclusively vertebrates. That is because of the rather large bias in popularity vertebrates have over invertebrates. Vertebrates are much less common in Arkansas than invertebrates, but they get almost all the press. Let me know in the comments section if you have any other contenders.

arkansauruspicThe first contender for Arkansas’s most famous fossil is Arkansaurus, the only dinosaur to have been found in the state. Found in 1972 in Sevier County, the only bones found comprised the front half of one foot. Despite considerable searching, nothing else has ever been found. The lack of diagnostic bones has made it impossible to determine exactly what kind of dinosaur it was. All that can really be said is that it is some kind of coelurosaur, a type of theropod, but not a tyrannosaurid, ornithomimid, or any other more derived form related to birds. We can also say it was a medium-sized dinosaur, meaning it wasn’t terribly small, as the front half of the foot measures just over two feet long. A statue was made by Vance Pleasant, which was recently seen at the Museum of Discovery as part of a dinosaur exhibit. How accurate is it? It’s a reasonable estimate based on what we know right now, which is not much, except that the real animal probably had some form of feathers not seen on the statue. The fossils are currently housed at the University of Arkansas at Fayetteville.

ticker_fishskull_freeMy vote for the Arkansas fossil that is more widely known outside the state better than inside it is Ozarcus, a primitive shark found by the paleontologists Royal and Gene Mapes in the Ozark Mountains near Leslie. The reason for the fame of this fossil is that it is the oldest known shark fossil that preserves the gill supports, known as the branchial basket. These normally do not preserve because they are made of cartilage, much like most of the rest of the shark skeleton. The gill supports here indicated that both sharks and osteichthyans, or bony fish, evolved from an ancestor that looked more like bony fish than it did the cartilaginous sharks, meaning that the original sharks were not primitive to bony fish, but possibly evolved after the appearance of bony fish. Due to this, Ozarcus got international coverage and became well known to paleontologists. The fossil currently resides at the American Museum of Natural History in New York.

The last contender for Arkansas’s most famous fossil is the Hazen Mammoth, the only mammoth known from the state. Found in 1965, it consisted of the skull, tusks, and some vertebra. There was a lot more of the skeleton found, but unfortunately, the bones were very soft and were severely damaged or destroyed before they could be collected. The bones were identified as Mammuthus columbi, or the Columbian Mammoth, a less hairy version of the more commonly known woolly mammoth, indicating warmer temperatures than found in areas in which the woolly mammoth is known. Even though only one mammoth has been found in Arkansas, upwards of two dozen mastodons have been found. Mastodons were smaller cousins of the mammoths and preferred forest habitats over the grassy plains in which the mammoths lived. This provides evidence that much like today, the state was mostly forested during the Pleistocene Period in which they lived. Today, the mammoth is a resident of the University of Arkansas at Fayetteville.

So what would you call the most famous fossil of Arkansas?